All files / strided/variancepn/lib accessors.js

63.91% Statements 62/97
100% Branches 1/1
0% Functions 0/1
63.91% Lines 62/97

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 981x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                                       1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var gsumpw = require( '@stdlib/blas/ext/base/gsumpw' ).ndarray;
 
 
// MAIN //
 
/**
* Computes the variance of a strided array using a two-pass algorithm.
*
* ## Method
*
* -   This implementation uses a two-pass approach, as suggested by Neely (1966).
*
* ## References
*
* -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param {PositiveInteger} N - number of indexed elements
* @param {number} correction - degrees of freedom adjustment
* @param {Object} x - input array object
* @param {Collection} x.data - input array data
* @param {Array<Function>} x.accessors - array element accessors
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} variance
*
* @example
* var toAccessorArray = require( '@stdlib/array/base/to-accessor-array' );
* var arraylike2object = require( '@stdlib/array/base/arraylike2object' );
*
* var x = toAccessorArray( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
*
* var v = variancepn( 4, 1, arraylike2object( x ), 2, 1 );
* // returns 6.25
*/
function variancepn( N, correction, x, strideX, offsetX ) {
	var xbuf;
	var get;
	var mu;
	var ix;
	var M2;
	var M;
	var d;
	var n;
	var i;

	// Cache reference to array data:
	xbuf = x.data;

	// Cache a reference to the element accessor:
	get = x.accessors[ 0 ];

	// Compute an estimate for the mean:
	mu = gsumpw( N, xbuf, strideX, offsetX ) / N;

	n = N - correction;
	ix = offsetX;

	// Compute the variance...
	M2 = 0.0;
	M = 0.0;

	for ( i = 0; i < N; i++ ) {
		d = get( xbuf, ix ) - mu;
		M2 += d * d;
		M += d;
		ix += strideX;
	}
	return (M2/n) - ((M/N)*(M/n));
}
 
 
// EXPORTS //
 
module.exports = variancepn;