All files / strided/variancech/lib accessors.js

63.15% Statements 60/95
100% Branches 1/1
0% Functions 0/1
63.15% Lines 60/95

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 961x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                                       1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MAIN //
 
/**
* Computes the variance of a strided array using a one-pass trial mean algorithm.
*
* ## Method
*
* -   This implementation uses a one-pass trial mean approach, as suggested by Chan et al (1983).
*
* ## References
*
* -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* -   Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154](https://doi.org/10.2307/2286154).
* -   Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. "Algorithms for Computing the Sample Variance: Analysis and Recommendations." _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242–47. doi:[10.1080/00031305.1983.10483115](https://doi.org/10.1080/00031305.1983.10483115).
* -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @private
* @param {PositiveInteger} N - number of indexed elements
* @param {number} correction - degrees of freedom adjustment
* @param {Object} x - input array object
* @param {Collection} x.data - input array data
* @param {Array<Function>} x.accessors - array element accessors
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} variance
*
* @example
* var toAccessorArray = require( '@stdlib/array/base/to-accessor-array' );
* var arraylike2object = require( '@stdlib/array/base/arraylike2object' );
*
* var x = toAccessorArray( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
*
* var v = variancech( 4, 1, arraylike2object( x ), 2, 1 );
* // returns 6.25
*/
function variancech( N, correction, x, strideX, offsetX ) {
	var xbuf;
	var get;
	var mu;
	var ix;
	var M2;
	var M;
	var d;
	var n;
	var i;

	// Cache reference to array data:
	xbuf = x.data;

	// Cache a reference to the element accessor:
	get = x.accessors[ 0 ];

	n = N - correction;
	ix = offsetX;

	// Use an estimate for the mean:
	mu = get( xbuf, ix );
	ix += strideX;

	// Compute the variance...
	M2 = 0.0;
	M = 0.0;
	for ( i = 1; i < N; i++ ) {
		d = get( xbuf, ix ) - mu;
		M2 += d * d;
		M += d;
		ix += strideX;
	}
	return (M2/n) - ((M/N)*(M/n));
}
 
 
// EXPORTS //
 
module.exports = variancech;