All files / strided/meanwd/lib accessors.js

70.65% Statements 65/92
100% Branches 1/1
0% Functions 0/1
70.65% Lines 65/92

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 931x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                       1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MAIN //
 
/**
* Computes the arithmetic mean of a strided array using Welford's algorithm.
*
* ## Method
*
* -   This implementation uses Welford's algorithm for efficient computation, which can be derived as follows
*
*     ```tex
*     \begin{align*}
*     \mu_n &= \frac{1}{n} \sum_{i=0}^{n-1} x_i \\
*           &= \frac{1}{n} \biggl(x_{n-1} + \sum_{i=0}^{n-2} x_i \biggr) \\
*           &= \frac{1}{n} (x_{n-1} + (n-1)\mu_{n-1}) \\
*           &= \mu_{n-1} + \frac{1}{n} (x_{n-1} - \mu_{n-1})
*     \end{align*}
*     ```
*
* ## References
*
* -   Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022).
* -   van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961).
*
* @private
* @param {PositiveInteger} N - number of indexed elements
* @param {Object} x - input array object
* @param {Collection} x.data - input array data
* @param {Array<Function>} x.accessors - array element accessors
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} arithmetic mean
*
* @example
* var toAccessorArray = require( '@stdlib/array/base/to-accessor-array' );
* var arraylike2object = require( '@stdlib/array/base/arraylike2object' );
*
* var x = toAccessorArray( [ 1.0, -2.0, 2.0 ] );
* var v = meanwd( 3, arraylike2object( x ), 1, 0 );
* // returns ~0.3333
*/
function meanwd( N, x, strideX, offsetX ) {
	var xbuf;
	var get;
	var mu;
	var ix;
	var n;
	var i;

	// Cache reference to array data:
	xbuf = x.data;

	// Cache a reference to the element accessor:
	get = x.accessors[ 0 ];

	if ( N === 1 || strideX === 0 ) {
		return get( xbuf, offsetX );
	}
	ix = offsetX;
	mu = 0.0;
	n = 0;
	for ( i = 0; i < N; i++ ) {
		n += 1;
		mu += ( get( xbuf, ix )-mu ) / n;
		ix += strideX;
	}
	return mu;
}
 
 
// EXPORTS //
 
module.exports = meanwd;