Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x | /**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var resolveStr = require( '@stdlib/stats/base/ztest/alternative-resolve-str' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var quantile = require( '@stdlib/stats/base/dists/normal/quantile' ).factory;
var cdf = require( '@stdlib/stats/base/dists/normal/cdf' ).factory;
var dmean = require( '@stdlib/stats/strided/dmean' ).ndarray;
var sqrt = require( '@stdlib/math/base/special/sqrt' );
var abs = require( '@stdlib/math/base/special/abs' );
var Float64Array = require( '@stdlib/array/float64' );
var PINF = require( '@stdlib/constants/float64/pinf' );
var NINF = require( '@stdlib/constants/float64/ninf' );
// VARIABLES //
var normalCDF = cdf( 0.0, 1.0 );
var normalQuantile = quantile( 0.0, 1.0 );
// Initialize a workspace for storing confidence intervals:
var WORKSPACE = new Float64Array( 2 );
// MAIN //
/**
* Computes a one-sample Z-test for a double-precision floating-point strided array using alternative indexing semantics.
*
* @param {PositiveInteger} N - number of indexed elements
* @param {(integer|string)} alternative - alternative hypothesis
* @param {number} alpha - significance level
* @param {number} mu - mean under the null hypothesis
* @param {PositiveNumber} sigma - known standard deviation
* @param {Float64Array} x - input array
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @param {Object} out - output results object
* @returns {Object} results object
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var Results = require( '@stdlib/stats/base/ztest/one-sample/results/float64' );
*
* var x = new Float64Array( [ 4.0, 4.0, 6.0, 6.0, 5.0 ] );
*
* var results = new Results();
* var out = dztest( x.length, 'two-sided', 0.05, 0.0, 1.0, x, 1, 0, results );
* // returns {...}
*
* var bool = ( out === results );
* // returns true
*/
function dztest( N, alternative, alpha, mu, sigma, x, strideX, offsetX, out ) {
var pValue;
var stderr;
var xmean;
var stat;
var alt;
var q;
alt = resolveStr( alternative );
if (
N <= 0 ||
isnan( alpha ) ||
isnan( mu ) ||
isnan( sigma ) ||
sigma <= 0.0 ||
alpha < 0.0 ||
alpha > 1.0
) {
WORKSPACE[ 0 ] = NaN;
WORKSPACE[ 1 ] = NaN;
out.rejected = false;
out.alternative = alt;
out.alpha = NaN;
out.pValue = NaN;
out.statistic = NaN;
out.ci = WORKSPACE;
out.nullValue = NaN;
out.sd = NaN;
return out;
}
// Compute the standard error of the mean:
stderr = sigma / sqrt( N );
// Compute the arithmetic mean of the input array:
xmean = dmean( N, x, strideX, offsetX );
// Compute the test statistic (i.e., the z-score, which is the distance of the sample mean from the population mean in units of standard error):
stat = ( xmean - mu ) / stderr;
// Compute the p-value and confidence interval...
if ( alt === 'less' ) {
pValue = normalCDF( stat );
q = normalQuantile( 1.0-alpha );
WORKSPACE[ 0 ] = NINF;
WORKSPACE[ 1 ] = mu + ( (stat+q)*stderr );
} else if ( alt === 'greater' ) {
pValue = 1.0 - normalCDF( stat );
q = normalQuantile( 1.0-alpha );
WORKSPACE[ 0 ] = mu + ( (stat-q)*stderr );
WORKSPACE[ 1 ] = PINF;
} else { // alt == 'two-sided'
pValue = 2.0 * normalCDF( -abs( stat ) );
q = normalQuantile( 1.0-(alpha/2.0) );
WORKSPACE[ 0 ] = mu + ( (stat-q)*stderr );
WORKSPACE[ 1 ] = mu + ( (stat+q)*stderr );
}
// Return test results:
out.rejected = ( pValue <= alpha );
out.alternative = alt;
out.alpha = alpha;
out.pValue = pValue;
out.statistic = stat;
out.ci = WORKSPACE;
out.nullValue = mu;
out.sd = stderr;
return out;
}
// EXPORTS //
module.exports = dztest;
|