All files / strided/dsmeanwd/lib ndarray.js

73.8% Statements 62/84
100% Branches 1/1
0% Functions 0/1
73.8% Lines 62/84

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 851x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                             1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MAIN //
 
/**
* Computes the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.
*
* ## Method
*
* -   This implementation uses Welford's algorithm for efficient computation, which can be derived as follows
*
*     ```tex
*     \begin{align*}
*     \mu_n &= \frac{1}{n} \sum_{i=0}^{n-1} x_i \\
*           &= \frac{1}{n} \biggl(x_{n-1} + \sum_{i=0}^{n-2} x_i \biggr) \\
*           &= \frac{1}{n} (x_{n-1} + (n-1)\mu_{n-1}) \\
*           &= \mu_{n-1} + \frac{1}{n} (x_{n-1} - \mu_{n-1})
*     \end{align*}
*     ```
*
* ## References
*
* -   Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022).
* -   van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961).
*
* @param {PositiveInteger} N - number of indexed elements
* @param {Float32Array} x - input array
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} arithmetic mean
*
* @example
* var Float32Array = require( '@stdlib/array/float32' );
*
* var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
*
* var v = dsmeanwd( 4, x, 2, 1 );
* // returns 1.25
*/
function dsmeanwd( N, x, strideX, offsetX ) {
	var mu;
	var ix;
	var n;
	var i;

	if ( N <= 0 ) {
		return NaN;
	}
	if ( N === 1 || strideX === 0 ) {
		return x[ offsetX ];
	}
	ix = offsetX;
	mu = 0.0;
	n = 0;
	for ( i = 0; i < N; i++ ) {
		n += 1;
		mu += ( x[ix]-mu ) / n;
		ix += strideX;
	}
	return mu;
}
 
 
// EXPORTS //
 
module.exports = dsmeanwd;