All files / strided/dcovmatmtk/lib index.js

97.91% Statements 94/96
50% Branches 1/2
100% Functions 0/0
97.91% Lines 94/96

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 971x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x     1x 1x 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
/**
* Compute the covariance matrix for an `M` by `N` double-precision floating-point matrix `A` and assign the results to a matrix `B` when provided known means and using a one-pass textbook algorithm.
*
* @module @stdlib/stats/strided/dcovmatmtk
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var dcovmatmtk = require( '@stdlib/stats/strided/dcovmatmtk' );
*
* // Define a 2x3 matrix in which variables are stored along rows in row-major order:
* var A = new Float64Array([
*     1.0, -2.0, 2.0,
*     2.0, -2.0, 1.0
* ]);
*
* // Define a vector of known means:
* var means = new Float64Array( [ 1.0/3.0, 1.0/3.0 ] );
*
* // Allocate a 2x2 output matrix:
* var B = new Float64Array( [ 0.0, 0.0, 0.0, 0.0 ] );
*
* // Perform operation:
* var out = dcovmatmtk( 'row-major', 'rows', 'full', 2, 3, 1, means, 1, A, 3, B, 2 );
* // returns <Float64Array>[ ~4.3333, ~3.8333, ~3.8333, ~4.3333 ]
*
* var bool = ( B === out );
* // returns true
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var dcovmatmtk = require( '@stdlib/stats/strided/dcovmatmtk' );
*
* // Define a 2x3 matrix in which variables are stored along rows in row-major order:
* var A = new Float64Array([
*     1.0, -2.0, 2.0,
*     2.0, -2.0, 1.0
* ]);
*
* // Define a vector of known means:
* var means = new Float64Array( [ 1.0/3.0, 1.0/3.0 ] );
*
* // Allocate a 2x2 output matrix:
* var B = new Float64Array( [ 0.0, 0.0, 0.0, 0.0 ] );
*
* // Perform operation:
* var out = dcovmatmtk.ndarray( 'rows', 'full', 2, 3, 1, means, 1, 0, A, 3, 1, 0, B, 2, 1, 0 );
* // returns <Float64Array>[ ~4.3333, ~3.8333, ~3.8333, ~4.3333 ]
*
* var bool = ( B === out );
* // returns true
*/
 
// MODULES //
 
var join = require( 'path' ).join;
var tryRequire = require( '@stdlib/utils/try-require' );
var isError = require( '@stdlib/assert/is-error' );
var main = require( './main.js' );
 
 
// MAIN //
 
var dcovmatmtk;
var tmp = tryRequire( join( __dirname, './native.js' ) );
if ( isError( tmp ) ) {
	dcovmatmtk = main;
} else {
	dcovmatmtk = tmp;
}
 
 
// EXPORTS //
 
module.exports = dcovmatmtk;
 
// exports: { "ndarray": "dcovmatmtk.ndarray" }