Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x | /**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var incrspace = require( '@stdlib/array/base/incrspace' );
var sample = require( '@stdlib/random/sample' );
var Float64Array = require( '@stdlib/array/float64' );
var dfill = require( '@stdlib/blas/ext/base/dfill' );
var tabulate = require( './tabulate.js' );
var testStatistic = require( './statistic.js' );
// MAIN //
/**
* Performs a Monte-Carlo simulation.
*
* @private
* @param {NonNegativeInteger} N - number of indexed elements
* @param {Float64Array} expected - expected number of observations
* @param {NumericArray} p - probabilities
* @param {number} stat - test statistic
* @param {NonNegativeInteger} nobs - total number of observations
* @param {NonNegativeInteger} niter - number of iterations
* @returns {number} p-value
*/
function simulate( N, expected, p, stat, nobs, niter ) {
var pool;
var opts;
var freq;
var cnt;
var v;
var i;
pool = incrspace( 0, N, 1 ); // TODO: replace with strided interface
opts = {
'size': nobs,
'probs': p
};
freq = new Float64Array( N );
cnt = 1;
for ( i = 0; i < niter; i++ ) {
v = sample( pool, opts ); // TODO: use `sample.factory` method once sample pkg is updated
freq = tabulate( N, v, 1, freq, 1 );
if ( testStatistic( N, freq, 1, expected, 1 ) >= stat ) { // TODO: consider replacing with low-level double-precision strided interface
cnt += 1;
}
if ( i < niter-1 ) {
dfill( N, 0.0, freq, 1 );
}
}
return cnt / ( niter+1 );
}
// EXPORTS //
module.exports = simulate;
|