All files / dnanmeanpn/lib main.js

93.84% Statements 61/65
100% Branches 1/1
0% Functions 0/1
93.84% Lines 61/65

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 661x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x         1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var numelDimension = require( '@stdlib/ndarray/base/numel-dimension' );
var getStride = require( '@stdlib/ndarray/base/stride' );
var getOffset = require( '@stdlib/ndarray/base/offset' );
var getData = require( '@stdlib/ndarray/base/data-buffer' );
var strided = require( '@stdlib/stats/strided/dnanmeanpn' ).ndarray;
 
 
// MAIN //
 
/**
* Computes the arithmetic mean of a one-dimensional double-precision floating-point ndarray, ignoring `NaN` values and using a two-pass error correction algorithm.
*
* ## Method
*
* -   This implementation uses a two-pass approach, as suggested by Neely (1966).
*
* ## References
*
* -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param {ArrayLikeObject<Object>} arrays - array-like object containing an input ndarray
* @returns {number} arithmetic mean
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var ndarray = require( '@stdlib/ndarray/base/ctor' );
*
* var xbuf = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, NaN, 2.0, 3.0, 4.0, NaN, NaN ] );
* var x = new ndarray( 'float64', xbuf, [ 10 ], [ 1 ], 0, 'row-major' );
*
* var v = dnanmeanpn( [ x ] );
* // returns 1.7142857142857142
*/
function dnanmeanpn( arrays ) {
	var x = arrays[ 0 ];
	return strided( numelDimension( x, 0 ), getData( x ), getStride( x, 0 ), getOffset( x ) ); // eslint-disable-line max-len
}
 
 
// EXPORTS //
 
module.exports = dnanmeanpn;