All files / covarmtk/lib main.js

82.22% Statements 74/90
100% Branches 1/1
0% Functions 0/1
82.22% Lines 74/90

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 911x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var numelDimension = require( '@stdlib/ndarray/base/numel-dimension' );
var getStride = require( '@stdlib/ndarray/base/stride' );
var getOffset = require( '@stdlib/ndarray/base/offset' );
var getData = require( '@stdlib/ndarray/base/data-buffer' );
var ndarraylike2scalar = require( '@stdlib/ndarray/base/ndarraylike2scalar' );
var strided = require( '@stdlib/stats/strided/covarmtk' ).ndarray;
 
 
// MAIN //
 
/**
* Computes the covariance of two one-dimensional ndarrays provided known means and using a one-pass textbook algorithm.
*
* ## Notes
*
* -   The function expects the following ndarrays in order:
*
*     -   first one-dimensional input ndarray.
*     -   second one-dimensional input ndarray.
*     -   a zero-dimensional ndarray specifying the degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the covariance according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment and `N` corresponds to the number of elements in each input ndarray. When computing the population covariance, setting this parameter to `0` is the standard choice (i.e., the provided arrays contain data constituting entire populations). When computing the unbiased sample covariance, setting this parameter to `1` is the standard choice (i.e., the provided arrays contain data sampled from larger populations; this is commonly referred to as Bessel's correction).
*     -   a zero-dimensional ndarray specifying the mean of the first one-dimensional ndarray.
*     -   a zero-dimensional ndarray specifying the mean of the second one-dimensional ndarray.
*
* @param {ArrayLikeObject<Object>} arrays - array-like object containing input ndarrays
* @returns {number} covariance
*
* @example
* var scalar2ndarray = require( '@stdlib/ndarray/from-scalar' );
* var ndarray = require( '@stdlib/ndarray/base/ctor' );
*
* var opts = {
*     'dtype': 'generic'
* };
*
* var xbuf = [ 1.0, -2.0, 2.0 ];
* var x = new ndarray( opts.dtype, xbuf, [ 3 ], [ 1 ], 0, 'row-major' );
*
* var ybuf = [ 2.0, -2.0, 1.0 ];
* var y = new ndarray( opts.dtype, ybuf, [ 3 ], [ 1 ], 0, 'row-major' );
*
* var correction = scalar2ndarray( 1.0, opts );
* var meanx = scalar2ndarray( 1.0/3.0, opts );
* var meany = scalar2ndarray( 1.0/3.0, opts );
*
* var v = covarmtk( [ x, y, correction, meanx, meany ] );
* // returns ~3.8333
*/
function covarmtk( arrays ) {
	var correction;
	var meanx;
	var meany;
	var x;
	var y;

	x = arrays[ 0 ];
	y = arrays[ 1 ];

	correction = ndarraylike2scalar( arrays[ 2 ] );
	meanx = ndarraylike2scalar( arrays[ 3 ] );
	meany = ndarraylike2scalar( arrays[ 4 ] );

	return strided( numelDimension( x, 0 ), correction, meanx, getData( x ), getStride( x, 0 ), getOffset( x ), meany, getData( y ), getStride( y, 0 ), getOffset( y ) ); // eslint-disable-line max-len
}
 
 
// EXPORTS //
 
module.exports = covarmtk;