All files / stats/base/meanpn/lib ndarray.js

100% Statements 83/83
100% Branches 9/9
100% Functions 1/1
100% Lines 83/83

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 843x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 29x 29x 29x 29x 29x 29x 4x 4x 25x 29x 11x 11x 29x 6x 6x 8x 8x 8x 8x 8x 8x 8x 29x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var gsumpw = require( '@stdlib/blas/ext/base/gsumpw' ).ndarray;
var gapxsumpw = require( '@stdlib/blas/ext/base/gapxsumpw' ).ndarray;
var arraylike2object = require( '@stdlib/array/base/arraylike2object' );
var accessors = require( './accessors.js' );
 
 
// MAIN //
 
/**
* Computes the arithmetic mean of a strided array using a two-pass error correction algorithm.
*
* ## Method
*
* -   This implementation uses a two-pass approach, as suggested by Neely (1966).
*
* ## References
*
* -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param {PositiveInteger} N - number of indexed elements
* @param {NumericArray} x - input array
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} arithmetic mean
*
* @example
*
* var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ];
*
* var v = meanpn( 4, x, 2, 1 );
* // returns 1.25
*/
function meanpn( N, x, strideX, offsetX ) {
	var mu;
	var c;
	var o;
 
	if ( N <= 0 ) {
		return NaN;
	}
	o = arraylike2object( x );
	if ( o.accessorProtocol ) {
		return accessors( N, o, strideX, offsetX );
	}
	if ( N === 1 || strideX === 0 ) {
		return x[ offsetX ];
	}
	// Compute an estimate for the meanpn:
	mu = gsumpw( N, x, strideX, offsetX ) / N;
 
	// Compute an error term:
	c = gapxsumpw( N, -mu, x, strideX, offsetX ) / N;
 
	return mu + c;
}
 
 
// EXPORTS //
 
module.exports = meanpn;