All files / stats/base/meanpn/lib accessors.js

100% Statements 72/72
100% Branches 5/5
100% Functions 1/1
100% Lines 72/72

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 733x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 11x 11x 11x 11x 11x 11x 11x 11x 11x 11x 4x 4x 7x 7x 7x 7x 7x 7x 7x 11x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var gsumpw = require( '@stdlib/blas/ext/base/gsumpw' ).ndarray;
var gapxsumpw = require( '@stdlib/blas/ext/base/gapxsumpw' ).ndarray;
 
 
// MAIN //
 
/**
* Computes the arithmetic mean of a strided array using a two-pass error correction algorithm.
*
* @private
* @param {PositiveInteger} N - number of indexed elements
* @param {Object} x - input array object
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} arithmetic mean
*
* @example
* var toAccessorArray = require( '@stdlib/array/base/to-accessor-array' );
* var arraylike2object = require( '@stdlib/array/base/arraylike2object' );
*
* var x = toAccessorArray( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
*
* var v = meanpn( 4, arraylike2object( x ), 2, 1 );
* // returns 1.25
*/
function meanpn( N, x, strideX, offsetX ) {
	var xbuf;
	var get;
	var mu;
	var c;
 
	xbuf = x.data;
	get = x.accessors[ 0 ];
 
	if ( N === 1 || strideX === 0 ) {
		return get( xbuf, offsetX );
	}
	// Compute an estimate for the meanpn:
	mu = gsumpw( N, xbuf, strideX, offsetX ) / N;
 
	// Compute an error term:
	c = gapxsumpw( N, -mu, xbuf, strideX, offsetX ) / N;
 
	return mu + c;
}
 
 
// EXPORTS //
 
module.exports = meanpn;