All files / pdf/lib factory.js

64.86% Statements 72/111
100% Branches 1/1
0% Functions 0/1
64.86% Lines 72/111

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 1121x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                                               1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var constantFunction = require( '@stdlib/utils/constant-function' );
var exp = require( '@stdlib/math/base/special/exp' );
var pow = require( '@stdlib/math/base/special/pow' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var sqrt = require( '@stdlib/math/base/special/sqrt' );
var normal = require( '@stdlib/stats/base/dists/normal/cdf' ).factory;
var PI = require( '@stdlib/constants/float64/pi' );
 
 
// VARIABLES //
 
var normalCDF = normal( 0.0, 1.0 );
 
 
// MAIN //
 
/**
* Returns a function for evaluating the probability density function (PDF) for a truncated normal distribution with endpoints `a` and `b`, mean `mu` and standard deviation `sigma`.
*
* @param {number} a - minimum support
* @param {number} b - maximum support
* @param {number} mu - location parameter
* @param {PositiveNumber} sigma - scale parameter
* @returns {Function} PDF
*
* @example
* var myPDF = factory( 0.0, 1.0, 0.0, 1.0 );
* var y = myPDF( 0.8 );
* // returns ~0.849
*
* @example
* var myPDF = factory( 0.0, 1.0, 0.5, 1.0 );
* var y = myPDF( 0.8 );
* // returns ~0.996
*
* @example
* var myPDF = factory( 0.0, 1.0, 0.0, 1.0 );
* var y = myPDF( 2.0 );
* // returns 0.0
*
* @example
* var myPDF = factory( 0.0, 1.0, 0.0, 1.0 );
* var y = myPDF( -1.0 );
* // returns 0.0
*/
function factory( a, b, mu, sigma ) {
	var s2x2;
	var A;
	var B;
	var C;

	if (
		isnan( a ) ||
		isnan( b ) ||
		isnan( mu ) ||
		isnan( sigma ) ||
		sigma <= 0.0 ||
		a >= b
	) {
		return constantFunction( NaN );
	}
	s2x2 = 2.0 * pow( sigma, 2.0 );
	A = 1.0 / ( sqrt( s2x2 * PI ) );
	B = -1.0 / ( s2x2 );
	C = normalCDF( (b-mu)/sigma ) - normalCDF( (a-mu)/sigma );
	return pdf;

	/**
	* Evaluates the probability density function (PDF) for a truncated normal distribution.
	*
	* @private
	* @param {number} x - input value
	* @returns {number} evaluated PDF
	*/
	function pdf( x ) {
		if ( isnan( x ) ) {
			return NaN;
		}
		if ( x < a || x > b ) {
			return 0.0;
		}
		return A * exp( B * pow( x - mu, 2.0 ) ) / C;
	}
}
 
 
// EXPORTS //
 
module.exports = factory;