All files / dists/normal/logcdf/lib main.js

80.76% Statements 84/104
100% Branches 1/1
0% Functions 0/1
80.76% Lines 84/104

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 1051x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                         1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2022 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var ln = require( '@stdlib/math/base/special/ln' );
var log1p = require( '@stdlib/math/base/special/log1p' );
var abs2 = require( '@stdlib/math/base/special/abs2' );
var erfc = require( '@stdlib/math/base/special/erfc' );
var erfcx = require( '@stdlib/math/base/special/erfcx' );
var NINF = require( '@stdlib/constants/float64/ninf' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
 
 
// VARIABLES //
 
var INV_SQRT_TWO = 0.7071067811865475; // 1/sqrt(2)
 
 
// MAIN //
 
/**
* Evaluates the natural logarithm of the cumulative distribution function (CDF) for a normal distribution with mean `mu` and standard deviation `sigma` at a value `x`.
*
* @param {number} x - input value
* @param {number} mu - mean
* @param {NonNegativeNumber} sigma - standard deviation
* @returns {number} logarithm of cumulative distribution function
*
* @example
* var y = logcdf( 2.0, 0.0, 1.0 );
* // returns ~-0.023
*
* @example
* var y = logcdf( -1.0, 4.0, 2.0 );
* // returns ~-5.082
*
* @example
* var y = logcdf( NaN, 0.0, 1.0 );
* // returns NaN
*
* @example
* var y = logcdf( 0.0, NaN, 1.0 );
* // returns NaN
*
* @example
* var y = logcdf( 0.0, 0.0, NaN );
* // returns NaN
*
* @example
* // Negative standard deviation:
* var y = logcdf( 2.0, 0.0, -1.0 );
* // returns NaN
*
* @example
* var y = logcdf( 2.0, 8.0, 0.0 );
* // returns -Infinity
*
* @example
* var y = logcdf( 8.0, 8.0, 0.0 );
* // returns 0.0
*/
function logcdf( x, mu, sigma ) {
	var z;
	if (
		isnan( x ) ||
		isnan( mu ) ||
		isnan( sigma ) ||
		sigma < 0.0
	) {
		return NaN;
	}
	if ( sigma === 0.0 ) {
		return (x < mu) ? NINF : 0.0;
	}
	z = ( x - mu ) / sigma;
	if ( z < -1.0 ) {
		return ln( erfcx( -z * INV_SQRT_TWO ) / 2.0 ) - ( abs2(z) / 2.0 );
	}
	// Case: z >= -1.0:
	return log1p( -erfc( z * INV_SQRT_TWO ) / 2.0 );
}
 
 
// EXPORTS //
 
module.exports = logcdf;