All files / dists/kumaraswamy/mean/lib main.js

86.07% Statements 68/79
100% Branches 1/1
0% Functions 0/1
86.07% Lines 68/79

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 801x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                       1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var beta = require( '@stdlib/math/base/special/beta' );
 
 
// MAIN //
 
/**
* Returns the expected value of a Kumaraswamy's double bounded distribution.
*
* @param {PositiveNumber} a - first shape parameter
* @param {PositiveNumber} b - second shape parameter
* @returns {PositiveNumber} expected value
*
* @example
* var v = mean( 1.5, 1.5 );
* // returns ~0.512
*
* @example
* var v = mean( 4.0, 12.0 );
* // returns ~0.481
*
* @example
* var v = mean( 12.0, 2.0 );
* // returns ~0.886
*
* @example
* var v = mean( 1.5, -0.1 );
* // returns NaN
*
* @example
* var v = mean( -0.1, 1.5 );
* // returns NaN
*
* @example
* var v = mean( 2.0, NaN );
* // returns NaN
*
* @example
* var v = mean( NaN, 2.0 );
* // returns NaN
*/
function mean( a, b ) {
	if (
		isnan( a ) ||
		a <= 0.0 ||
		isnan( b ) ||
		b <= 0.0
	) {
		return NaN;
	}
	return b * beta( 1.0 + ( 1.0/a ), b );
}
 
 
// EXPORTS //
 
module.exports = mean;