Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x | /**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var max = require( '@stdlib/math/base/special/max' );
var min = require( '@stdlib/math/base/special/min' );
var cdf = require( '@stdlib/stats/base/dists/hypergeometric/cdf' );
var PINF = require( '@stdlib/constants/float64/pinf' );
// MAIN //
/**
* Evaluates the quantile function for a hypergeometric distribution with population size `N`, subpopulation size `K`, and number of draws `n` at a probability `p`.
*
* @param {Probability} p - input value
* @param {NonNegativeInteger} N - population size
* @param {NonNegativeInteger} K - subpopulation size
* @param {NonNegativeInteger} n - number of draws
* @returns {NonNegativeInteger} evaluated quantile function
*
* @example
* var y = quantile( 0.4, 40, 20, 10 );
* // returns 5
*
* @example
* var y = quantile( 0.8, 60, 40, 20 );
* // returns 15
*
* @example
* var y = quantile( 0.5, 100, 10, 10 );
* // returns 1
*
* @example
* var y = quantile( 0.0, 100, 40, 20 );
* // returns 0
*
* @example
* var y = quantile( 1.0, 100, 40, 20 );
* // returns 20
*
* @example
* var y = quantile( NaN, 40, 20, 10 );
* // returns NaN
*
* @example
* var y = quantile( 0.2, NaN, 20, 10 );
* // returns NaN
*
* @example
* var y = quantile( 0.2, 40, NaN, 10 );
* // returns NaN
*
* @example
* var y = quantile( 0.2, 40, 20, NaN );
* // returns NaN
*/
function quantile( p, N, K, n ) {
var prob;
var x;
if (
isnan( p ) ||
isnan( N ) ||
isnan( K ) ||
isnan( n ) ||
!isNonNegativeInteger( N ) ||
!isNonNegativeInteger( K ) ||
!isNonNegativeInteger( n ) ||
N === PINF ||
K === PINF ||
K > N ||
n > N ||
p < 0.0 ||
p > 1.0
) {
return NaN;
}
if ( p === 0.0 ) {
return max( 0, n + K - N );
}
if ( p === 1.0 ) {
return min( n, K );
}
x = max( 0, n + K - N );
while ( true ) {
prob = cdf( x, N, K, n );
if ( prob > p ) {
break;
}
x += 1;
}
return x;
}
// EXPORTS //
module.exports = quantile;
|