All files / dists/hypergeometric/pmf/lib factory.js

52.38% Statements 55/105
100% Branches 1/1
0% Functions 0/1
52.38% Lines 55/105

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 1061x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                                                                     1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var constantFunction = require( '@stdlib/utils/constant-function' );
var exp = require( '@stdlib/math/base/special/exp' );
var fln = require( '@stdlib/math/base/special/factorialln' );
var max = require( '@stdlib/math/base/special/max' );
var min = require( '@stdlib/math/base/special/min' );
var PINF = require( '@stdlib/constants/float64/pinf' );
 
 
// MAIN //
 
/**
* Returns a function for evaluating the probability mass function (PMF) for a hypergeometric distribution with population size `N`, subpopulation size `K`, and number of draws `n`.
*
* @param {NonNegativeInteger} N - population size
* @param {NonNegativeInteger} K - subpopulation size
* @param {NonNegativeInteger} n - number of draws
* @returns {Function} PMF
*
* @example
* var mypmf = factory( 30, 20, 5 );
* var y = mypmf( 4.0 );
* // returns ~0.34
*
* y = mypmf( 1.0 );
* // returns ~0.029
*/
function factory( N, K, n ) {
	var maxs;
	var mins;
	if (
		isnan( N ) ||
		isnan( K ) ||
		isnan( n ) ||
		!isNonNegativeInteger( N ) ||
		!isNonNegativeInteger( K ) ||
		!isNonNegativeInteger( n ) ||
		N === PINF ||
		K === PINF ||
		K > N ||
		n > N
	) {
		return constantFunction( NaN );
	}

	mins = max( 0, n + K - N );
	maxs = min( K, n );
	return pmf;

	/**
	* Evaluates the probability mass function (PMF) for a hypergeometric distribution.
	*
	* @private
	* @param {number} x - input value
	* @returns {Probability} evaluated PMF
	*/
	function pmf( x ) {
		var ldenom;
		var lnum;
		var lpmf;
		if ( isnan( x ) ) {
			return NaN;
		}
		if (
			isNonNegativeInteger( x ) &&
			mins <= x &&
			x <= maxs
		) {
			lnum = fln( n ) + fln( K ) + fln( N - n ) + fln( N - K );
			ldenom = fln( N ) + fln( x ) + fln( n - x );
			ldenom += fln( K - x ) + fln( N - K + x - n );
			lpmf = lnum - ldenom;
			return exp( lpmf );
		}
		return 0.0;
	}
}
 
 
// EXPORTS //
 
module.exports = factory;