All files / dists/hypergeometric/logpmf/lib factory.js

53.39% Statements 55/103
100% Branches 1/1
0% Functions 0/1
53.39% Lines 55/103

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 1041x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                                                                 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' );
var constantFunction = require( '@stdlib/utils/constant-function' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var fln = require( '@stdlib/math/base/special/factorialln' );
var max = require( '@stdlib/math/base/special/max' );
var min = require( '@stdlib/math/base/special/min' );
var NINF = require( '@stdlib/constants/float64/ninf' );
var PINF = require( '@stdlib/constants/float64/pinf' );
 
 
// MAIN //
 
/**
* Returns a function for evaluating the natural logarithm of the probability mass function (PMF) for a hypergeometric distribution with population size `N`, subpopulation size `K` and number of draws `n`.
*
* @param {NonNegativeInteger} N - population size
* @param {NonNegativeInteger} K - subpopulation size
* @param {NonNegativeInteger} n - number of draws
* @returns {Function} logPMF
*
* @example
* var mylogpmf = factory( 30, 20, 5 );
* var y = mylogpmf( 4.0 );
* // returns ~-1.079
*
* y = mylogpmf( 1.0 );
* // returns ~-3.524
*/
function factory( N, K, n ) {
	var maxs;
	var mins;
	if (
		isnan( N ) ||
		isnan( K ) ||
		isnan( n ) ||
		!isNonNegativeInteger( N ) ||
		!isNonNegativeInteger( K ) ||
		!isNonNegativeInteger( n ) ||
		N === PINF ||
		K === PINF ||
		K > N ||
		n > N
	) {
		return constantFunction( NaN );
	}

	mins = max( 0, n + K - N );
	maxs = min( K, n );
	return logpmf;

	/**
	* Evaluates the natural logarithm of the probability mass function (PMF) for a hypergeometric distribution.
	*
	* @private
	* @param {number} x - input value
	* @returns {number} evaluated logPMF
	*/
	function logpmf( x ) {
		var ldenom;
		var lnum;
		if ( isnan( x ) ) {
			return NaN;
		}
		if (
			isNonNegativeInteger( x ) &&
			mins <= x &&
			x <= maxs
		) {
			lnum = fln( n ) + fln( K ) + fln( N - n ) + fln( N - K );
			ldenom = fln( N ) + fln( x ) + fln( n - x );
			ldenom += fln( K - x ) + fln( N - K + x - n );
			return lnum - ldenom;
		}
		return NINF;
	}
}
 
 
// EXPORTS //
 
module.exports = factory;