All files / dists/bradford/skewness/lib main.js

71.25% Statements 57/80
100% Branches 1/1
0% Functions 0/1
71.25% Lines 57/80

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 811x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                               1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var SQRT2 = require( '@stdlib/constants/float64/sqrt-two' );
var sqrt = require( '@stdlib/math/base/special/sqrt' );
var ln = require( '@stdlib/math/base/special/ln' );
 
 
// MAIN //
 
/**
* Returns the skewness of a Bradford distribution.
*
* @param {PositiveNumber} c - shape parameter
* @returns {PositiveNumber} skewness
*
* @example
* var v = skewness( 9.0 );
* // returns ~0.772
*
* @example
* var v = skewness( 1.0 );
* // returns ~0.239
*
* @example
* var v = skewness( -0.2 );
* // returns NaN
*
* @example
* var v = skewness( NaN );
* // returns NaN
*/
function skewness( c ) {
	var ans;
	var t1;
	var t2;
	var t3;
	var p;

	if ( isnan( c ) || c <= 0.0 ) {
		return NaN;
	}

	p = ln( 1.0 + c );

	t1 = 12.0 * ( c*c );
	t2 = 9.0 * c * p * ( c + 2.0 );
	t3 = 2.0 * ( p*p ) * ( ( c * ( c + 3.0 ) ) + 3.0 );
	ans = SQRT2 * ( t1 - t2 + t3 );

	t1 = c * ( ( c * ( p - 2.0 ) ) + ( 2.0 * p ) );
	t2 = ( 3.0 * c * ( p - 2.0 ) ) + ( 6.0 * p );
	ans /= sqrt( t1 ) * t2;
	return ans;
}
 
 
// EXPORTS //
 
module.exports = skewness;