All files / dists/bernoulli/ctor/lib main.js

85.98% Statements 313/364
100% Branches 1/1
0% Functions 0/13
85.98% Lines 313/364

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 3651x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x       1x 1x 1x 1x 1x 1x 1x 1x       1x 1x 1x 1x 1x 1x 1x 1x       1x 1x 1x 1x 1x 1x 1x 1x       1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                               1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x   1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x   1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x   1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x   1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x   1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x   1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x   1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x   1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
/* eslint-disable no-restricted-syntax, no-invalid-this */
 
'use strict';
 
// MODULES //
 
var defineProperty = require( '@stdlib/utils/define-property' );
var setReadOnly = require( '@stdlib/utils/define-nonenumerable-read-only-property' );
var setReadOnlyAccessor = require( '@stdlib/utils/define-nonenumerable-read-only-accessor' );
var isProbability = require( '@stdlib/assert/is-probability' ).isPrimitive;
var entropy = require( '@stdlib/stats/base/dists/bernoulli/entropy' );
var kurtosis = require( '@stdlib/stats/base/dists/bernoulli/kurtosis' );
var mean = require( '@stdlib/stats/base/dists/bernoulli/mean' );
var mode = require( '@stdlib/stats/base/dists/bernoulli/mode' );
var median = require( '@stdlib/stats/base/dists/bernoulli/median' );
var skewness = require( '@stdlib/stats/base/dists/bernoulli/skewness' );
var stdev = require( '@stdlib/stats/base/dists/bernoulli/stdev' );
var variance = require( '@stdlib/stats/base/dists/bernoulli/variance' );
var cdf = require( '@stdlib/stats/base/dists/bernoulli/cdf' );
var mgf = require( '@stdlib/stats/base/dists/bernoulli/mgf' );
var pmf = require( '@stdlib/stats/base/dists/bernoulli/pmf' );
var quantile = require( '@stdlib/stats/base/dists/bernoulli/quantile' );
var format = require( '@stdlib/string/format' );
 
 
// FUNCTIONS //
 
/**
* Evaluates the cumulative distribution function (CDF).
*
* @private
* @param {number} x - input value
* @returns {number} evaluated CDF
*/
function bernoulliCDF( x ) {
	return cdf( x, this.p );
}
 
/**
* Evaluates the moment-generating function (MGF).
*
* @private
* @param {number} t - input value
* @returns {number} evaluated MGF
*/
function bernoulliMGF( t ) {
	return mgf( t, this.p );
}
 
/**
* Evaluates the probability mass function (PMF).
*
* @private
* @param {number} x - input value
* @returns {number} evaluated PMF
*/
function bernoulliPMF( x ) {
	return pmf( x, this.p );
}
 
/**
* Evaluates the quantile function.
*
* @private
* @param {Probability} p - input probability
* @returns {number} evaluated quantile function
*/
function bernoulliQuantile( p ) {
	return quantile( p, this.p );
}
 
 
// MAIN //
 
/**
* Bernoulli distribution constructor.
*
* @constructor
* @param {Probability} [p=0.5] - success probability
* @throws {TypeError} `p` must be a probability
* @returns {Bernoulli} distribution instance
*
* @example
* var bernoulli = new Bernoulli();
*
* var y = bernoulli.cdf( 1.8 );
* // returns 1.0
*
* var v = bernoulli.median;
* // returns 0.0
*/
function Bernoulli() {
	var p;
	if ( !(this instanceof Bernoulli) ) {
		if ( arguments.length === 0 ) {
			return new Bernoulli();
		}
		return new Bernoulli( arguments[ 0 ] );
	}
	if ( arguments.length ) {
		p = arguments[ 0 ];
		if ( !isProbability( p ) ) {
			throw new TypeError( format( 'invalid argument. Mean parameter must be a probability. Value: `%s`.', p ) );
		}
	} else {
		p = 0.5;
	}
	defineProperty( this, 'p', {
		'configurable': false,
		'enumerable': true,
		'get': function get() {
			return p;
		},
		'set': function set( value ) {
			if ( !isProbability( value ) ) {
				throw new TypeError( format( 'invalid assignment. Must be a probability. Value: `%s`.', value ) );
			}
			p = value;
		}
	});
	return this;
}
 
/**
* Bernoulli distribution differential entropy.
*
* @name entropy
* @memberof Bernoulli.prototype
* @type {number}
* @see [differential entropy]{@link https://en.wikipedia.org/wiki/Entropy_%28information_theory%29}
*
* @example
* var bernoulli = new Bernoulli( 0.4 );
*
* var v = bernoulli.entropy;
* // returns ~0.673
*/
setReadOnlyAccessor( Bernoulli.prototype, 'entropy', function get() {
	return entropy( this.p );
});
 
/**
* Bernoulli distribution excess kurtosis.
*
* @name kurtosis
* @memberof Bernoulli.prototype
* @type {number}
* @see [kurtosis]{@link https://en.wikipedia.org/wiki/Kurtosis}
*
* @example
* var bernoulli = new Bernoulli( 0.4 );
*
* var v = bernoulli.kurtosis;
* // returns ~-1.833
*/
setReadOnlyAccessor( Bernoulli.prototype, 'kurtosis', function get() {
	return kurtosis( this.p );
});
 
/**
* Bernoulli distribution expected value.
*
* @name mean
* @memberof Bernoulli.prototype
* @type {number}
* @see [expected value]{@link https://en.wikipedia.org/wiki/Expected_value}
*
* @example
* var bernoulli = new Bernoulli( 0.4 );
*
* var v = bernoulli.mean;
* // returns 0.4
*/
setReadOnlyAccessor( Bernoulli.prototype, 'mean', function get() {
	return mean( this.p );
});
 
/**
* Bernoulli distribution median.
*
* @name median
* @memberof Bernoulli.prototype
* @type {number}
* @see [median]{@link https://en.wikipedia.org/wiki/Median}
*
* @example
* var bernoulli = new Bernoulli( 0.4 );
*
* var v = bernoulli.median;
* // returns 0.0
*/
setReadOnlyAccessor( Bernoulli.prototype, 'median', function get() {
	return median( this.p );
});
 
/**
* Bernoulli distribution mode.
*
* @name mode
* @memberof Bernoulli.prototype
* @type {number}
* @see [mode]{@link https://en.wikipedia.org/wiki/Mode_%28statistics%29}
*
* @example
* var bernoulli = new Bernoulli( 0.4 );
*
* var v = bernoulli.mode;
* // returns 0.0
*/
setReadOnlyAccessor( Bernoulli.prototype, 'mode', function get() {
	return mode( this.p );
});
 
/**
* Bernoulli distribution skewness.
*
* @name skewness
* @memberof Bernoulli.prototype
* @type {number}
* @see [skewness]{@link https://en.wikipedia.org/wiki/Skewness}
*
* @example
* var bernoulli = new Bernoulli( 0.4 );
*
* var v = bernoulli.skewness;
* // returns ~0.408
*/
setReadOnlyAccessor( Bernoulli.prototype, 'skewness', function get() {
	return skewness( this.p );
});
 
/**
* Bernoulli distribution standard deviation.
*
* @name stdev
* @memberof Bernoulli.prototype
* @type {PositiveNumber}
* @see [standard deviation]{@link https://en.wikipedia.org/wiki/Standard_deviation}
*
* @example
* var bernoulli = new Bernoulli( 0.4 );
*
* var v = bernoulli.stdev;
* // returns ~0.49
*/
setReadOnlyAccessor( Bernoulli.prototype, 'stdev', function get() {
	return stdev( this.p );
});
 
/**
* Bernoulli distribution variance.
*
* @name variance
* @memberof Bernoulli.prototype
* @type {PositiveNumber}
* @see [variance]{@link https://en.wikipedia.org/wiki/Variance}
*
* @example
* var bernoulli = new Bernoulli( 0.4 );
*
* var v = bernoulli.variance;
* // returns 0.24
*/
setReadOnlyAccessor( Bernoulli.prototype, 'variance', function get() {
	return variance( this.p );
});
 
/**
* Evaluates the cumulative distribution function (CDF).
*
* @name cdf
* @memberof Bernoulli.prototype
* @type {Function}
* @param {number} x - input value
* @returns {number} evaluated CDF
* @see [cdf]{@link https://en.wikipedia.org/wiki/Cumulative_distribution_function}
*
* @example
* var bernoulli = new Bernoulli( 0.2 );
*
* var v = bernoulli.cdf( 1.5 );
* // returns 1.0
*/
setReadOnly( Bernoulli.prototype, 'cdf', bernoulliCDF );
 
/**
* Evaluates the moment-generating function (MGF).
*
* @name mgf
* @memberof Bernoulli.prototype
* @type {Function}
* @param {number} t - input value
* @returns {number} evaluated MGF
* @see [mgf]{@link https://en.wikipedia.org/wiki/Moment-generating_function}
*
* @example
* var bernoulli = new Bernoulli( 0.2 );
*
* var v = bernoulli.mgf( -3.0 );
* // returns ~0.81
*/
setReadOnly( Bernoulli.prototype, 'mgf', bernoulliMGF );
 
/**
* Evaluates the probability mass function (PMF).
*
* @name pmf
* @memberof Bernoulli.prototype
* @type {Function}
* @param {number} x - input value
* @returns {number} evaluated PMF
* @see [pmf]{@link https://en.wikipedia.org/wiki/Probability_mass_function}
*
* @example
* var bernoulli = new Bernoulli( 0.2 );
*
* var v = bernoulli.pmf( 1.0 );
* // returns 0.2
*
* v = bernoulli.pmf( 0.0 );
* // returns 0.8
*/
setReadOnly( Bernoulli.prototype, 'pmf', bernoulliPMF );
 
/**
* Evaluates the quantile function.
*
* @name quantile
* @memberof Bernoulli.prototype
* @type {Function}
* @param {Probability} p - input probability
* @returns {number} evaluated quantile function
* @see [quantile function]{@link https://en.wikipedia.org/wiki/Quantile_function}
*
* @example
* var bernoulli = new Bernoulli( 0.2 );
*
* var v = bernoulli.quantile( 0.9 );
* // returns 1.0
*/
setReadOnly( Bernoulli.prototype, 'quantile', bernoulliQuantile );
 
 
// EXPORTS //
 
module.exports = Bernoulli;