Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 1039x 1039x 1039x 1039x 1039x 1039x 1039x 1039x 1039x 1015x 1039x 29x 29x 1039x 4x 4x 1039x 6x 6x 1000x 1000x 1000x 1000x 1039x 2x 2x 2x 2x 2x | /**
* @license Apache-2.0
*
* Copyright (c) 2026 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var exp = require( '@stdlib/math/base/special/exp' );
var sqrt = require( '@stdlib/math/base/special/sqrt' );
var TWO_PI = require( '@stdlib/constants/float64/two-pi' );
var PINF = require( '@stdlib/constants/float64/pinf' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
// MAIN //
/**
* Evaluates the probability density function (PDF) for a Wald distribution with mean `mu` and shape parameter `lambda` at a value `x`.
*
* @param {number} x - input value
* @param {PositiveNumber} mu - mean
* @param {PositiveNumber} lambda - shape parameter
* @returns {number} evaluated probability density function
*
* @example
* var y = pdf( 2.0, 1.0, 1.0 );
* // returns ~0.110
*
* @example
* var y = pdf( 0.5, 2.0, 3.0 );
* // returns ~0.362
*
* @example
* var y = pdf( NaN, 1.0, 1.0 );
* // returns NaN
*
* @example
* var y = pdf( 1.0, NaN, 1.0 );
* // returns NaN
*
* @example
* var y = pdf( 1.0, 1.0, NaN );
* // returns NaN
*
* @example
* // Non-positive mean:
* var y = pdf( 2.0, 0.0, 1.0 );
* // returns NaN
*
* @example
* var y = pdf( 2.0, -1.0, 1.0 );
* // returns NaN
*
* @example
* // Negative shape parameter:
* var y = pdf( 2.0, 1.0, -1.0 );
* // returns NaN
*
* @example
* // Zero shape parameter (degenerate distribution):
* var y = pdf( 2.0, 1.0, 0.0 );
* // returns 0.0
*
* @example
* var y = pdf( 1.0, 1.0, 0.0 );
* // returns Infinity
*
* @example
* // Non-positive x:
* var y = pdf( 0.0, 1.0, 1.0 );
* // returns 0.0
*
* @example
* var y = pdf( -1.0, 1.0, 1.0 );
* // returns 0.0
*/
function pdf( x, mu, lambda ) {
var A;
var B;
var v;
if (
isnan( x ) ||
isnan( mu ) ||
isnan( lambda ) ||
mu <= 0.0 ||
lambda < 0.0
) {
return NaN;
}
if ( lambda === 0.0 ) {
return ( x === mu ) ? PINF : 0.0;
}
if ( x <= 0.0 || !isFinite( x ) ) {
return 0.0;
}
A = sqrt( lambda / TWO_PI );
B = -lambda / ( 2.0 * mu * mu );
v = x - mu;
return A / ( x * sqrt( x ) ) * exp( B * v * v / x );
}
// EXPORTS //
module.exports = pdf;
|