All files main.js

100% Statements 120/120
100% Branches 6/6
100% Functions 2/2
100% Lines 120/120

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 1211x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 8x 8x 8x 8x 8x 8x 8x 8x 8x 8x 8x 8x 8x 8x 8x 8x 8x 8x 8x 110x 2x 1x 1x 1x 1x 108x 108x 108x 108x 110x 8x 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2019 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
/**
* Returns an accumulator function which incrementally computes a weighted arithmetic mean.
*
* ## Method
*
* -   The weighted arithmetic mean is defined as
*
*     ```tex
*     \mu = \frac{\sum_{i=0}^{n-1} w_i x_i}{\sum_{i=0}^{n-1} w_i}
*     ```
*
*     where \\( w_i \\) are the weights.
*
* -   The weighted arithmetic mean is equivalent to the simple arithmetic mean when all weights are equal.
*
*     ```tex
*     \begin{align*}
*     \mu &= \frac{\sum_{i=0}^{n-1} w x_i}{\sum_{i=0}^{n-1} w} \\
*         &= \frac{w\sum_{i=0}^{n-1} x_i}{nw} \\
*         &= \frac{1}{n} \sum_{i=0}^{n-1}
*     \end{align*}
*     ```
*
* -   If the weights are different, then one can view weights either as sample frequencies or as a means to calculate probabilities where \\( p_i = w_i / \sum w_i \\).
*
* -   To derive an incremental formula for computing a weighted arithmetic mean, let
*
*     ```tex
*     W_n = \sum_{i=1}^{n} w_i
*     ```
*
* -   Accordingly,
*
*     ```tex
*     \begin{align*}
*     \mu_n &= \frac{1}{W_n} \sum_{i=1}^{n} w_i x_i \\
*         &= \frac{1}{W_n} \biggl(w_n x_n + \sum_{i=1}^{n-1} w_i x_i \biggr) \\
*         &= \frac{1}{W_n} (w_n x_n + W_{n-1} \mu_{n-1}) \\
*         &= \frac{1}{W_n} (w_n x_n + (W_n - w_n) \mu_{n-1}) \\
*         &= \frac{1}{W_n} (W_n \mu_{n-1} + w_n x_n - w_n\mu_{n-1}) \\
*         &= \mu_{n-1} + \frac{w_n}{W_n} (x_n - \mu_{n-1})
*     \end{align*}
*     ```
*
* @returns {Function} accumulator function
*
* @example
* var accumulator = incrwmean();
*
* var mu = accumulator();
* // returns null
*
* mu = accumulator( 2.0, 1.0 );
* // returns 2.0
*
* mu = accumulator( 2.0, 0.5 );
* // returns 2.0
*
* mu = accumulator( 3.0, 1.5 );
* // returns 2.5
*
* mu = accumulator();
* // returns 2.5
*/
function incrwmean() {
	var wsum;
	var FLG;
	var mu;
 
	wsum = 0.0;
	mu = 0.0;
 
	return accumulator;
 
	/**
	* If provided arguments, the accumulator function returns an updated weighted mean. If not provided arguments, the accumulator function returns the current weighted mean.
	*
	* @private
	* @param {number} [x] - value
	* @param {number} [w] - weight
	* @returns {(number|null)} weighted mean or null
	*/
	function accumulator( x, w ) {
		if ( arguments.length === 0 ) {
			if ( FLG === void 0 ) {
				return null;
			}
			return mu;
		}
		FLG = true;
		wsum += w;
		mu += ( w/wsum ) * ( x-mu );
		return mu;
	}
}
 
 
// EXPORTS //
 
module.exports = incrwmean;