All files / wvariance/lib main.js

62.83% Statements 93/148
100% Branches 1/1
0% Functions 0/1
62.83% Lines 93/148

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 1491x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                                                                               1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2026 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
var isnan = require( '@stdlib/math/base/assert/is-nan' );
 
/**
* Returns an accumulator function which incrementally computes a weighted variance.
*
* ## Method
*
* -   The weighted variance is defined as
*
*     ```tex
*     \sigma_w^2 = \frac{\sum_{i=1}^{n} w_i (x_i - \mu_w)^2}{\sum_{i=1}^{n} w_i}
*     ```
*
*     where \\( \mu_w \\) is the weighted arithmetic mean.
*
* -   Define the total weight
*
*     ```tex
*     W_n = \sum_{i=1}^{n} w_i
*     ```
*
* -   Define the unnormalized second central moment
*
*     ```tex
*     S_n = \sum_{i=1}^{n} w_i (x_i - \mu_n)^2
*     ```
*
* -   The weighted variance is obtained by normalizing
*
*     ```tex
*     \sigma_n^2 = \frac{S_n}{W_n}
*     ```
*
* -   The weighted mean is updated incrementally according to
*
*     ```tex
*     \mu_n = \mu_{n-1} + \frac{w_n}{W_n}(x_n - \mu_{n-1})
*     ```
*
* -   Using this update, the unnormalized variance accumulator satisfies
*
*     ```tex
*     S_n = S_{n-1} + w_n (x_n - \mu_{n-1})(x_n - \mu_n)
*     ```
*
*     which yields a numerically stable, one-pass algorithm for computing the
*     weighted variance.
*
* @returns {Function} accumulator function
*
* @example
* var accumulator = incrwvariance();
*
* var s2 = accumulator();
* // returns null
*
* s2 = accumulator( 2.0, 1.0 );
* // returns 0.0
*
* s2 = accumulator( 2.0, 0.5 );
* // returns 0.0
*
* s2 = accumulator( 3.0, 1.5 );
* // returns 0.25
*
* s2 = accumulator();
* // returns 0.25
*/
function incrwvariance() {
	var poisoned;
	var mu;
	var W;
	var S;
	var N;

	N = 0;
	W = 0.0;
	S = 0.0;
	mu = 0.0;
	poisoned = false;

	return accumulator;

	/**
	* If provided arguments, the accumulator function returns an updated weighted variance. If not provided arguments, the accumulator function returns the current weighted variance.
	*
	* @private
	* @param {number} [x] - value
	* @param {number} [w] - weight
	* @returns {(number|null)} weighted variance or null
	*/
	function accumulator( x, w ) {
		var muprev;
		if ( poisoned ) {
			return NaN;
		}

		if ( arguments.length === 0 ) {
			if ( N === 0 ) {
				return null;
			}
			return S / W;
		}
		if ( arguments.length !== 2 ) {
			poisoned = true;
			return NaN;
		}
		if ( isnan( x ) || isnan( w ) ) {
			poisoned = true;
			return NaN;
		}

		N += 1;
		W += w;
		muprev = mu;
		mu += ( w / W ) * ( x - mu );
		S += w * ( x - muprev ) * ( x - mu );
		if ( N === 1 ) {
			return 0.0;
		}
		return S / W;
	}
}
 
 
// EXPORTS //
 
module.exports = incrwvariance;