Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x | /**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive;
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var format = require( '@stdlib/string/format' );
// MAIN //
/**
* Returns an accumulator function which incrementally computes an unbiased sample variance.
*
* ## Method
*
* - This implementation uses Welford's algorithm for efficient computation, which can be derived as follows. Let
*
* ```tex
* \begin{align*}
* S_n &= n \sigma_n^2 \\
* &= \sum_{i=1}^{n} (x_i - \mu_n)^2 \\
* &= \biggl(\sum_{i=1}^{n} x_i^2 \biggr) - n\mu_n^2
* \end{align*}
* ```
*
* Accordingly,
*
* ```tex
* \begin{align*}
* S_n - S_{n-1} &= \sum_{i=1}^{n} x_i^2 - n\mu_n^2 - \sum_{i=1}^{n-1} x_i^2 + (n-1)\mu_{n-1}^2 \\
* &= x_n^2 - n\mu_n^2 + (n-1)\mu_{n-1}^2 \\
* &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1}^2 - \mu_n^2) \\
* &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1} - \mu_n)(\mu_{n-1} + \mu_n) \\
* &= x_n^2 - \mu_{n-1}^2 + (\mu_{n-1} - x_n)(\mu_{n-1} + \mu_n) \\
* &= x_n^2 - \mu_{n-1}^2 + \mu_{n-1}^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
* &= x_n^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
* &= (x_n - \mu_{n-1})(x_n - \mu_n) \\
* &= S_{n-1} + (x_n - \mu_{n-1})(x_n - \mu_n)
* \end{align*}
* ```
*
* where we use the identity
*
* ```tex
* x_n - \mu_{n-1} = n (\mu_n - \mu_{n-1})
* ```
*
* ## References
*
* - Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022).
* - van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961).
*
* @param {number} [mean] - mean value
* @throws {TypeError} must provide a number primitive
* @returns {Function} accumulator function
*
* @example
* var accumulator = incrvariance();
*
* var s2 = accumulator();
* // returns null
*
* s2 = accumulator( 2.0 );
* // returns 0.0
*
* s2 = accumulator( -5.0 );
* // returns 24.5
*
* s2 = accumulator();
* // returns 24.5
*
* @example
* var accumulator = incrvariance( 3.14 );
*/
function incrvariance( mean ) {
var delta;
var mu;
var M2;
var N;
M2 = 0.0;
N = 0;
if ( arguments.length ) {
if ( !isNumber( mean ) ) {
throw new TypeError( format( 'invalid argument. Must provide a number. Value: `%s`.', mean ) );
}
mu = mean;
return accumulator2;
}
mu = 0.0;
return accumulator1;
/**
* If provided a value, the accumulator function returns an updated unbiased sample variance. If not provided a value, the accumulator function returns the current unbiased sample variance.
*
* @private
* @param {number} [x] - new value
* @returns {(number|null)} unbiased sample variance or null
*/
function accumulator1( x ) {
if ( arguments.length === 0 ) {
if ( N === 0 ) {
return null;
}
if ( N === 1 ) {
return ( isnan( M2 ) ) ? NaN : 0.0;
}
return M2 / (N-1);
}
N += 1;
delta = x - mu;
mu += delta / N;
M2 += delta * ( x - mu );
if ( N < 2 ) {
return ( isnan( M2 ) ) ? NaN : 0.0;
}
return M2 / (N-1);
}
/**
* If provided a value, the accumulator function returns an updated unbiased sample variance. If not provided a value, the accumulator function returns the current unbiased sample variance.
*
* @private
* @param {number} [x] - new value
* @returns {(number|null)} unbiased sample variance or null
*/
function accumulator2( x ) {
if ( arguments.length === 0 ) {
if ( N === 0 ) {
return null;
}
return M2 / N;
}
N += 1;
delta = x - mu;
M2 += delta * delta;
return M2 / N;
}
}
// EXPORTS //
module.exports = incrvariance;
|