All files / pcorrdist/lib main.js

66.98% Statements 71/106
100% Branches 1/1
0% Functions 0/1
66.98% Lines 71/106

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 1071x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                                       1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive;
var incrpcorr = require( '@stdlib/stats/incr/pcorr' );
var format = require( '@stdlib/string/format' );
 
 
// MAIN //
 
/**
* Returns an accumulator function which incrementally computes a sample Pearson product-moment correlation distance.
*
* ## Method
*
* -   The sample Pearson product-moment correlation distance is defined as
*
*     ```tex
*     d = 1 - r = 1 - \frac{\operatorname{cov}_n(x,y)}{\sigma_x \sigma_y}
*     ```
*
* -   The implementation thus computes the sample Pearson product-moment correlation coefficient \\(r\\) and subtracts the coefficient from 1.
*
* @param {number} [meanx] - mean value
* @param {number} [meany] - mean value
* @throws {TypeError} first argument must be a number
* @throws {TypeError} second argument must be a number
* @returns {Function} accumulator function
*
* @example
* var accumulator = incrpcorrdist();
*
* var d = accumulator();
* // returns null
*
* d = accumulator( 2.0, 1.0 );
* // returns 1.0
*
* d = accumulator( -5.0, 3.14 );
* // returns ~2.0
*
* d = accumulator();
* // returns ~2.0
*
* @example
* var accumulator = incrpcorrdist( 2.0, -3.0 );
*/
function incrpcorrdist( meanx, meany ) {
	var pcorr;
	if ( arguments.length ) {
		if ( !isNumber( meanx ) ) {
			throw new TypeError( format( 'invalid argument. First argument must be a number. Value: `%s`.', meanx ) );
		}
		if ( !isNumber( meany ) ) {
			throw new TypeError( format( 'invalid argument. Second argument must be a number. Value: `%s`.', meany ) );
		}
		pcorr = incrpcorr( meanx, meany );
	} else {
		pcorr = incrpcorr();
	}
	return accumulator;

	/**
	* If provided input values, the accumulator function returns an updated sample correlation distance. If not provided input values, the accumulator function returns the current sample correlation distance.
	*
	* @private
	* @param {number} [x] - new value
	* @param {number} [y] - new value
	* @returns {(number|null)} sample correlation distance or null
	*/
	function accumulator( x, y ) {
		var r;
		if ( arguments.length === 0 ) {
			r = pcorr();
			if ( r === null ) {
				return r;
			}
			return 1.0 - r;
		}
		return 1.0 - pcorr( x, y );
	}
}
 
 
// EXPORTS //
 
module.exports = incrpcorrdist;