Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x | /**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive;
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var sqrt = require( '@stdlib/math/base/special/sqrt' );
var format = require( '@stdlib/string/format' );
// MAIN //
/**
* Returns an accumulator function which incrementally computes a sample Pearson product-moment correlation coefficient.
*
* ## Method
*
* - We begin by defining the co-moment \\(C_n\\)
*
* ```tex
* C_n = \sum_{i=1}^{n} ( x_i - \bar{x}_n ) ( y_i - \bar{y}_n )
* ```
*
* where \\(\bar{x}_n\\) and \\(\bar{y}_n\\) are the sample means for \\(x\\) and \\(y\\), respectively.
*
* - Based on Welford's method, we know the update formulas for the sample means are given by
*
* ```tex
* \bar{x}_n = \bar{x}_{n-1} + \frac{x_n - \bar{x}_{n-1}}{n}
* ```
*
* and
*
* ```tex
* \bar{y}_n = \bar{y}_{n-1} + \frac{y_n - \bar{y}_{n-1}}{n}
* ```
*
* - Substituting into the equation for \\(C_n\\) and rearranging terms
*
* ```tex
* C_n = C_{n-1} + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})
* ```
*
* where the apparent asymmetry arises from
*
* ```tex
* x_n - \bar{x}_n = \frac{n-1}{n} (x_n - \bar{x}_{n-1})
* ```
*
* and, hence, the update term can be equivalently expressed
*
* ```tex
* \frac{n-1}{n} (x_n - \bar{x}_{n-1}) (y_n - \bar{y}_{n-1})
* ```
*
* - The covariance can be defined
*
* ```tex
* \begin{align*}
* \operatorname{cov}_n(x,y) &= \frac{C_n}{n} \\
* &= \frac{C_{n-1} + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n} \\
* &= \frac{(n-1)\operatorname{cov}_{n-1}(x,y) + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n}
* \end{align*}
* ```
*
* - Applying Bessel's correction, we arrive at an update formula for calculating an unbiased sample covariance
*
* ```tex
* \begin{align*}
* \operatorname{cov}_n(x,y) &= \frac{n}{n-1}\cdot\frac{(n-1)\operatorname{cov}_{n-1}(x,y) + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n} \\
* &= \operatorname{cov}_{n-1}(x,y) + \frac{(x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n-1} \\
* &= \frac{C_{n-1} + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n-1}
* &= \frac{C_{n-1} + (x_n - \bar{x}_{n-1}) (y_n - \bar{y}_n)}{n-1}
* \end{align*}
* ```
*
* - To calculate the corrected sample standard deviation, we can use Welford's method, which can be derived as follows. We can express the variance as
*
* ```tex
* \begin{align*}
* S_n &= n \sigma_n^2 \\
* &= \sum_{i=1}^{n} (x_i - \mu_n)^2 \\
* &= \biggl(\sum_{i=1}^{n} x_i^2 \biggr) - n\mu_n^2
* \end{align*}
* ```
*
* Accordingly,
*
* ```tex
* \begin{align*}
* S_n - S_{n-1} &= \sum_{i=1}^{n} x_i^2 - n\mu_n^2 - \sum_{i=1}^{n-1} x_i^2 + (n-1)\mu_{n-1}^2 \\
* &= x_n^2 - n\mu_n^2 + (n-1)\mu_{n-1}^2 \\
* &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1}^2 - \mu_n^2) \\
* &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1} - \mu_n)(\mu_{n-1} + \mu_n) \\
* &= x_n^2 - \mu_{n-1}^2 + (\mu_{n-1} - x_n)(\mu_{n-1} + \mu_n) \\
* &= x_n^2 - \mu_{n-1}^2 + \mu_{n-1}^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
* &= x_n^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
* &= (x_n - \mu_{n-1})(x_n - \mu_n) \\
* &= S_{n-1} + (x_n - \mu_{n-1})(x_n - \mu_n)
* \end{align*}
* ```
*
* where we use the identity
*
* ```tex
* x_n - \mu_{n-1} = n (\mu_n - \mu_{n-1})
* ```
*
* - To compute the corrected sample standard deviation, we apply Bessel's correction and take the square root.
*
* - The sample Pearson product-moment correlation coefficient can thus be calculated as
*
* ```tex
* r = \frac{\operatorname{cov}_n(x,y)}{\sigma_x \sigma_y}
* ```
*
* where \\(\sigma_x\\) and \\(\sigma_y\\) are the corrected sample standard deviations for \\(x\\) and \\(y\\), respectively.
*
* @param {number} [meanx] - mean value
* @param {number} [meany] - mean value
* @throws {TypeError} first argument must be a number
* @throws {TypeError} second argument must be a number
* @returns {Function} accumulator function
*
* @example
* var accumulator = incrpcorr();
*
* var r = accumulator();
* // returns null
*
* r = accumulator( 2.0, 1.0 );
* // returns 0.0
*
* r = accumulator( -5.0, 3.14 );
* // returns ~-1.0
*
* r = accumulator();
* // returns ~-1.0
*
* @example
* var accumulator = incrpcorr( 2.0, -3.0 );
*/
function incrpcorr( meanx, meany ) {
var M2x;
var M2y;
var dy1;
var dy2;
var dy;
var dx;
var mx;
var my;
var sx;
var sy;
var C;
var N;
M2x = 0.0;
M2y = 0.0;
C = 0.0;
N = 0;
if ( arguments.length ) {
if ( !isNumber( meanx ) ) {
throw new TypeError( format( 'invalid argument. First argument must be a number. Value: `%s`.', meanx ) );
}
if ( !isNumber( meany ) ) {
throw new TypeError( format( 'invalid argument. Second argument must be a number. Value: `%s`.', meany ) );
}
mx = meanx;
my = meany;
return accumulator2;
}
mx = 0.0;
my = 0.0;
return accumulator1;
/**
* If provided input values, the accumulator function returns an updated sample correlation coefficient. If not provided input values, the accumulator function returns the current sample correlation coefficient.
*
* @private
* @param {number} [x] - new value
* @param {number} [y] - new value
* @returns {(number|null)} sample correlation coefficient or null
*/
function accumulator1( x, y ) {
var n;
if ( arguments.length === 0 ) {
if ( N === 0 ) {
return null;
}
if ( N === 1 ) {
return ( isnan( M2x ) || isnan( M2y ) ) ? NaN : 0.0;
}
return ( C/(N-1) ) / ( sx*sy );
}
N += 1;
dx = x - mx;
mx += dx / N;
M2x += dx * ( x-mx );
dy1 = y - my;
my += dy1 / N;
dy2 = y - my;
M2y += dy2 * dy1;
C += dx * dy2;
if ( N < 2 ) {
return ( isnan( M2x ) || isnan( M2y ) ) ? NaN : 0.0;
}
n = N - 1;
sx = sqrt( M2x/n );
sy = sqrt( M2y/n );
return ( C/n ) / ( sx*sy ); // Note: why all the dividing by `N`? To avoid overflow.
}
/**
* If provided input values, the accumulator function returns an updated sample correlation coefficient. If not provided input values, the accumulator function returns the current sample correlation coefficient.
*
* @private
* @param {number} [x] - new value
* @param {number} [y] - new value
* @returns {(number|null)} sample correlation coefficient or null
*/
function accumulator2( x, y ) {
if ( arguments.length === 0 ) {
if ( N === 0 ) {
return null;
}
return ( C/N ) / ( sx*sy );
}
N += 1;
dx = x - mx;
M2x += dx * dx;
dy = y - my;
M2y += dy * dy;
C += dx * dy;
sx = sqrt( M2x/N );
sy = sqrt( M2y/N );
return ( C/N ) / ( sx*sy ); // Note: why all the dividing by `N`? To avoid overflow.
}
}
// EXPORTS //
module.exports = incrpcorr;
|