All files / meanvar/lib main.js

62.34% Statements 101/162
100% Branches 1/1
0% Functions 0/1
62.34% Lines 101/162

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 1631x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                                                                                           1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isArrayLike = require( '@stdlib/assert/is-array-like-object' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var format = require( '@stdlib/string/format' );
 
 
// MAIN //
 
/**
* Returns an accumulator function which incrementally computes an arithmetic mean and unbiased sample variance.
*
* ## Method
*
* -   This implementation uses Welford's algorithm for efficient computation, which can be derived as follows. Let
*
*     ```tex
*     \begin{align*}
*     S_n &= n \sigma_n^2 \\
*         &= \sum_{i=1}^{n} (x_i - \mu_n)^2 \\
*         &= \biggl(\sum_{i=1}^{n} x_i^2 \biggr) - n\mu_n^2
*     \end{align*}
*     ```
*
*     Accordingly,
*
*     ```tex
*     \begin{align*}
*     S_n - S_{n-1} &= \sum_{i=1}^{n} x_i^2 - n\mu_n^2 - \sum_{i=1}^{n-1} x_i^2 + (n-1)\mu_{n-1}^2 \\
*                   &= x_n^2 - n\mu_n^2 + (n-1)\mu_{n-1}^2 \\
*                   &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1}^2 - \mu_n^2) \\
*                   &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1} - \mu_n)(\mu_{n-1} + \mu_n) \\
*                   &= x_n^2 - \mu_{n-1}^2 + (\mu_{n-1} - x_n)(\mu_{n-1} + \mu_n) \\
*                   &= x_n^2 - \mu_{n-1}^2 + \mu_{n-1}^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
*                   &= x_n^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
*                   &= (x_n - \mu_{n-1})(x_n - \mu_n) \\
*                   &= S_{n-1} + (x_n - \mu_{n-1})(x_n - \mu_n)
*     \end{align*}
*     ```
*
*     where we use the identity
*
*     ```tex
*     x_n - \mu_{n-1} = n (\mu_n - \mu_{n-1})
*     ```
*
* ## References
*
* -   Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022).
* -   van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961).
*
* @param {Collection} [out] - output array
* @throws {TypeError} output argument must be array-like
* @returns {Function} accumulator function
*
* @example
* var accumulator = incrmeanvar();
*
* var mv = accumulator();
* // returns null
*
* mv = accumulator( 2.0 );
* // returns [ 2.0, 0.0 ]
*
* mv = accumulator( -5.0 );
* // returns [ -1.5, 24.5 ]
*
* mv = accumulator( 3.0 );
* // returns [ 0.0, 19.0 ]
*
* mv = accumulator( 5.0 );
* // returns [ 1.25, ~18.92 ]
*
* mv = accumulator();
* // returns [ 1.25, ~18.92 ]
*/
function incrmeanvar( out ) {
	var meanvar;
	var delta;
	var mu;
	var M2;
	var N;
	if ( arguments.length === 0 ) {
		meanvar = [ 0.0, 0.0 ];
	} else {
		if ( !isArrayLike( out ) ) {
			throw new TypeError( format( 'invalid argument. Output argument must be an array-like object. Value: `%s`.', out ) );
		}
		meanvar = out;
	}
	M2 = 0.0;
	mu = 0.0;
	N = 0;
	return accumulator;

	/**
	* If provided a value, the accumulator function returns updated results. If not provided a value, the accumulator function returns the current results.
	*
	* @private
	* @param {number} [x] - input value
	* @returns {(ArrayLikeObject|null)} output array or null
	*/
	function accumulator( x ) {
		if ( arguments.length === 0 ) {
			if ( N === 0 ) {
				return null;
			}
			meanvar[ 0 ] = mu; // Why? Because we cannot guarantee someone hasn't mutated the output array
			if ( N === 1 ) {
				if ( isnan( M2 ) ) {
					meanvar[ 1 ] = NaN;
				} else {
					meanvar[ 1 ] = 0.0;
				}
				return meanvar;
			}
			meanvar[ 1 ] = M2 / (N-1);
			return meanvar;
		}
		N += 1;
		delta = x - mu;
		mu += delta / N;
		M2 += delta * ( x - mu );

		meanvar[ 0 ] = mu;
		if ( N < 2 ) {
			if ( isnan( M2 ) ) {
				meanvar[ 1 ] = NaN;
			} else {
				meanvar[ 1 ] = 0.0;
			}
			return meanvar;
		}
		meanvar[ 1 ] = M2 / (N-1);
		return meanvar;
	}
}
 
 
// EXPORTS //
 
module.exports = incrmeanvar;