All files / kurtosis/lib main.js

47.79% Statements 65/136
100% Branches 1/1
0% Functions 0/1
47.79% Lines 65/136

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 1371x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                                                                                                               1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isnan = require( '@stdlib/math/base/assert/is-nan' );
 
 
// MAIN //
 
/**
* Returns an accumulator function which incrementally computes a corrected sample excess kurtosis.
*
* ## Method
*
* The algorithm computes the sample excess kurtosis using the formula for `G_2` in [Joanes and Gill 1998][@joanes:1998]. In contrast to alternatives for calculating a sample kurtosis, `G_2` is an unbiased estimator under normality.
*
* ## References
*
* -   Joanes, D. N., and C. A. Gill. 1998. "Comparing measures of sample skewness and kurtosis." _Journal of the Royal Statistical Society: Series D (The Statistician)_ 47 (1). Blackwell Publishers Ltd: 183–89. doi:[10.1111/1467-9884.00122][@joanes:1998].
*
* [@joanes:1998]: http://dx.doi.org/10.1111/1467-9884.00122
*
* @returns {Function} accumulator function
*
* @example
* var accumulator = incrkurtosis();
*
* var kurtosis = accumulator();
* // returns null
*
* kurtosis = accumulator( 2.0 );
* // returns null
*
* kurtosis = accumulator( 2.0 );
* // returns null
*
* kurtosis = accumulator( -4.0 );
* // returns null
*
* kurtosis = accumulator( -4.0 );
* // returns -6.0
*/
function incrkurtosis() {
	var deltaN2;
	var deltaN;
	var delta;
	var term1;
	var mean;
	var tmp;
	var g2;
	var M2;
	var M3;
	var M4;
	var N;

	deltaN2 = 0.0;
	deltaN = 0.0;
	delta = 0.0;
	term1 = 0.0;
	mean = 0.0;
	M2 = 0.0;
	M3 = 0.0;
	M4 = 0.0;
	N = 0;

	return accumulator;

	/**
	* If provided a value, the accumulator function returns an updated corrected sample excess kurtosis. If not provided a value, the accumulator function returns the current corrected sample excess kurtosis.
	*
	* @private
	* @param {number} [x] - new value
	* @returns {(number|null)} corrected sample excess kurtosis
	*/
	function accumulator( x ) {
		if ( arguments.length === 0 ) {
			if ( N < 4 ) {
				return ( isnan( M4 ) ) ? NaN : null;
			}
			// Calculate the population excess kurtosis:
			g2 = (( N*M4 ) / ( M2*M2 )) - 3.0;

			// Return the corrected sample excess kurtosis:
			return (N-1) / ( (N-2)*(N-3) ) * ( ((N+1)*g2) + 6.0 );
		}
		N += 1;
		delta = x - mean;
		deltaN = delta / N;
		deltaN2 = deltaN * deltaN;

		term1 = delta * deltaN * (N-1);

		tmp = term1 * deltaN2 * ((N*N) - (3*N) + 3);
		tmp += 6.0 * deltaN2 * M2;
		tmp -= 4.0 * deltaN * M3;
		M4 += tmp;

		tmp = term1 * deltaN * (N-2);
		tmp -= 3.0 * deltaN * M2;
		M3 += tmp;

		M2 += term1;
		mean += deltaN;
		if ( N < 4 ) {
			return ( isnan( M4 ) ) ? NaN : null;
		}
		// Calculate the population excess kurtosis:
		g2 = (N*M4 / ( M2*M2 )) - 3.0;

		// Return the corrected sample excess kurtosis:
		return (N-1) / ( (N-2)*(N-3) ) * ( ((N+1)*g2) + 6.0 );
	}
}
 
 
// EXPORTS //
 
module.exports = incrkurtosis;