All files / apcorr/lib main.js

63.26% Statements 62/98
100% Branches 1/1
0% Functions 0/1
63.26% Lines 62/98

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 991x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                                         1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive;
var incrpcorr = require( '@stdlib/stats/incr/pcorr' );
var abs = require( '@stdlib/math/base/special/abs' );
var format = require( '@stdlib/string/format' );
 
 
// MAIN //
 
/**
* Returns an accumulator function which incrementally computes a sample absolute Pearson product-moment correlation coefficient.
*
* @param {number} [meanx] - mean value
* @param {number} [meany] - mean value
* @throws {TypeError} first argument must be a number
* @throws {TypeError} second argument must be a number
* @returns {Function} accumulator function
*
* @example
* var accumulator = incrapcorr();
*
* var ar = accumulator();
* // returns null
*
* ar = accumulator( 2.0, 1.0 );
* // returns 0.0
*
* ar = accumulator( -5.0, 3.14 );
* // returns ~1.0
*
* ar = accumulator();
* // returns ~1.0
*
* @example
* var accumulator = incrapcorr( 2.0, -3.0 );
*/
function incrapcorr( meanx, meany ) {
	var acc;
	var N;
	if ( arguments.length ) {
		if ( !isNumber( meanx ) ) {
			throw new TypeError( format( 'invalid argument. First argument must be a number. Value: `%s`.', meanx ) );
		}
		if ( !isNumber( meany ) ) {
			throw new TypeError( format( 'invalid argument. Second argument must be a number. Value: `%s`.', meany ) );
		}
		acc = incrpcorr( meanx, meany );
	} else {
		acc = incrpcorr();
	}
	N = 0;
	return accumulator;

	/**
	* If provided input values, the accumulator function returns an updated sample correlation coefficient. If not provided input values, the accumulator function returns the current sample correlation coefficient.
	*
	* @private
	* @param {number} [x] - new value
	* @param {number} [y] - new value
	* @returns {(number|null)} sample absolute correlation coefficient or null
	*/
	function accumulator( x, y ) {
		if ( arguments.length === 0 ) {
			if ( N === 0 ) {
				return null;
			}
			return abs( acc() );
		}
		N += 1;
		return abs( acc( x, y ) );
	}
}
 
 
// EXPORTS //
 
module.exports = incrapcorr;