All files native.js

100% Statements 88/88
100% Branches 2/2
100% Functions 1/1
100% Lines 88/88

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 891x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 125x 125x 125x 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var addon = require( './../src/addon.node' );
 
 
// MAIN //
 
/**
* Evaluates the natural logarithm of the probability density function (PDF) for a Kumaraswamy's double bounded distribution with first shape parameter `a` and second shape parameter `b` at a value `x`.
*
* @private
* @param {number} x - input value
* @param {PositiveNumber} a - first shape parameter
* @param {PositiveNumber} b - second shape parameter
* @returns {number} evaluated logPDF
*
* @example
* var y = logpdf( 0.5, 1.0, 1.0 );
* // returns 0.0
*
* @example
* var y = logpdf( 0.5, 2.0, 4.0 );
* // returns ~0.523
*
* @example
* var y = logpdf( 0.2, 2.0, 2.0 );
* // returns ~-0.264
*
* @example
* var y = logpdf( 0.8, 4.0, 4.0 );
* // returns ~0.522
*
* @example
* var y = logpdf( -0.5, 4.0, 2.0 );
* // returns -Infinity
*
* @example
* var y = logpdf( 1.5, 4.0, 2.0 );
* // returns -Infinity
*
* @example
* var y = logpdf( 2.0, -1.0, 0.5 );
* // returns NaN
*
* @example
* var y = logpdf( 2.0, 0.5, -1.0 );
* // returns NaN
*
* @example
* var y = logpdf( NaN, 1.0, 1.0 );
* // returns NaN
*
* @example
* var y = logpdf( 0.0, NaN, 1.0 );
* // returns NaN
*
* @example
* var y = logpdf( 0.0, 1.0, NaN );
* // returns NaN
*/
function logpdf( x, a, b ) {
	return addon( x, a, b );
}
 
 
// EXPORTS //
 
module.exports = logpdf;