Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 2x 2x 14x 14x 14x 14x 14x 14x 14x 16x 34x 34x 4x 4x 30x 30x 30x 30x 30x 30x 30x 30x 30x 30x 30x 30x 30x 30x 30x 30x 30x 30x 30x 10x 16x 2x 2x 8x 16x 3x 3x 3x 3x 3x | /**
* @license Apache-2.0
*
* Copyright (c) 2026 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var reinterpret = require( '@stdlib/strided/base/reinterpret-complex64' );
var f32 = require( '@stdlib/number/float64/base/to-float32' );
// MAIN //
/**
* Computes the `L * D * L^H` factorization of a complex Hermitian positive definite tridiagonal matrix `A`.
*
* @private
* @param {NonNegativeInteger} N - order of matrix `A`
* @param {Float32Array} D - the `N` diagonal elements of `A`
* @param {integer} strideD - stride length for `D`
* @param {NonNegativeInteger} offsetD - starting index of `D`
* @param {Complex64Array} E - the `N-1` subdiagonal elements of `A`
* @param {integer} strideE - stride length for `E`
* @param {NonNegativeInteger} offsetE - starting index of `E`
* @returns {integer} status code
*
* @example
* var Float32Array = require( '@stdlib/array/float32' );
* var Complex64Array = require( '@stdlib/array/complex64' );
*
* var D = new Float32Array( [ 4.0, 5.0, 6.0 ] );
* var E = new Complex64Array( [ 1.0, 0.0, 2.0, 0.0 ] );
*
* cpttrf( 3, D, 1, 0, E, 1, 0 );
* // D => <Float32Array>[ 4, 4.75, ~5.15789 ]
*/
function cpttrf( N, D, strideD, offsetD, E, strideE, offsetE ) {
var viewE;
var eir;
var eii;
var id;
var ie;
var f;
var g;
var i;
if ( N === 0 ) {
return 0;
}
// Reinterpret complex array as float32 array:
viewE = reinterpret( E, 0 );
ie = offsetE * 2;
id = offsetD;
// Compute the `L * D * L^H` factorization of `A`...
for ( i = 0; i < N-1; i++ ) {
// If `D[k] <= 0`, then the matrix is not positive definite...
if ( D[ id ] <= 0.0 ) {
return i+1;
}
// Solve for E[k] and D[k+1]...
// Extract real and imaginary parts of E[k]:
eir = viewE[ ie ];
eii = viewE[ ie + 1 ];
// Compute F and G:
f = f32( eir / D[ id ] );
g = f32( eii / D[ id ] );
// Store the result back in E[k]:
viewE[ ie ] = f;
viewE[ ie + 1 ] = g;
// Update D[k+1]: D[k+1] = D[k+1] - F*EIR - G*EII
id += strideD;
D[ id ] = f32( D[ id ] - f32( f32( f * eir ) + f32( g * eii ) ) );
ie += strideE * 2;
}
// Check `D[k]` for positive definiteness...
if ( D[ id ] <= 0.0 ) {
return N;
}
return 0;
}
// EXPORTS //
module.exports = cpttrf;
|