All files main.js

100% Statements 77/77
100% Branches 9/9
100% Functions 1/1
100% Lines 77/77

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 782x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 39x 39x 39x 16x 16x 39x 2x 2x 21x 21x 39x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2026 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var exp = require( '@stdlib/math/base/special/exp' );
var sqrt = require( '@stdlib/math/base/special/sqrt' );
var PI = require( '@stdlib/constants/float64/pi' );
 
 
// MAIN //
 
/**
* Evaluates the probability density function (PDF) for a half-normal distribution.
*
* @param {number} x - input value
* @param {PositiveNumber} sigma - scale parameter
* @returns {number} evaluated PDF
*
* @example
* var y = pdf( 2.0, 1.0 );
* // returns ~0.108
*
* @example
* var y = pdf( 0.5, 1.0 );
* // returns ~0.704
*
* @example
* var y = pdf( -1.0, 1.0 );
* // returns 0.0
*
* @example
* var y = pdf( NaN, 1.0 );
* // returns NaN
*
* @example
* var y = pdf( 0.0, NaN );
* // returns NaN
*
* @example
* var y = pdf( 0.0, -1.0 );
* // returns NaN
*/
function pdf( x, sigma ) {
	var C;
	if ( isnan( x ) || isnan( sigma ) || sigma <= 0.0 ) {
		return NaN;
	}
	if ( x < 0.0 ) {
		return 0.0;
	}
	C = x / sigma;
	return ( sqrt( 2.0 / PI ) * exp( -0.5 * ( C*C ) ) / sigma );
}
 
 
// EXPORTS //
 
module.exports = pdf;