All files main.js

98.78% Statements 162/164
95% Branches 19/20
100% Functions 1/1
98.78% Lines 162/164

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 1651x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 338x 338x 338x 338x 338x 338x 338x 338x 335x 338x 5x 5x 333x 333x 338x 331x 331x 338x 324x 324x 338x 224x 224x 224x 338x 209x 209x 124x 338x 100x 100x 24x 338x 9x 9x 9x 2x 2x 7x 7x 15x 15x 338x     15x 338x 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
var isInfinitef = require( '@stdlib/math/base/assert/is-infinitef' );
var roundf = require( '@stdlib/math/base/special/roundf' );
var powf = require( '@stdlib/math/base/special/powf' );
var absf = require( '@stdlib/math/base/special/absf' );
var f32 = require( '@stdlib/number/float64/base/to-float32' );
var MAX_SAFE_INTEGER = require( '@stdlib/constants/float32/max-safe-integer' );
var MAX_EXP = require( '@stdlib/constants/float32/max-base10-exponent' );
var MIN_EXP = require( '@stdlib/constants/float32/min-base10-exponent' );
var MIN_EXP_SUBNORMAL = require( '@stdlib/constants/float32/min-base10-exponent-subnormal' );
 
 
// VARIABLES //
 
var MAX_INT = MAX_SAFE_INTEGER + 1;
var HUGE = f32( 1.0e+38 );
 
 
// MAIN //
 
/**
* Rounds a single-precision floating-point number to the nearest multiple of \\(10^n\\).
*
* ## Method
*
* 1.  If \\(|x| <= 2^{24}\\) and \\(|n| <= 38\\), we can use the formula
*
*     ```tex
*     \\operatorname{roundnf}(x,n) = \\frac{\\operatorname{roundf}(x \\cdot 10^{-n})}{10^{-n}}
*     ```
*
*     which shifts the decimal to the nearest multiple of \\(10^n\\), performs a standard \\(\\mathrm{roundf}\\) operation, and then shifts the decimal to its original position.
*
*     <!-- <note> -->
*
*     If \\(x \\cdot 10^{-n}\\) overflows, \\(x\\) lacks a sufficient number of decimal digits to have any effect when rounding. Accordingly, the rounded value is \\(x\\).
*
*     <!-- </note> -->
*
*     <!-- <note> -->
*
*     Note that rescaling \\(x\\) can result in unexpected behavior. For instance, the result of \\(\\operatorname{roundnf}(0.2+0.1,-16)\\) is \\(0.30000001192092896\\) and not \\(0.3\\). While possibly unexpected, this is not a bug. The behavior stems from the fact that most decimal fractions cannot be exactly represented as floating-point numbers. And further, rescaling can lead to slightly different fractional values, which, in turn, affects the result of \\(\mathrm{roundf}\\).
*
*     <!-- </note> -->
*
* 2.  If \\(n > 38\\), we recognize that the maximum absolute single-precision floating-point number is \\(\\approx 3.4\\mbox{e}38\\) and, thus, the result of rounding any possible finite number \\(x\\) to the nearest \\(10^n\\) is \\(0.0\\). To ensure consistent behavior with \\(\\operatorname{roundf}(x)\\), the sign of \\(x\\) is preserved.
*
* 3.  If \\(n < -45\\), \\(n\\) exceeds the maximum number of possible decimal places (such as with subnormal numbers), and, thus, the rounded value is \\(x\\).
*
* 4.  If \\(x > 2^{24}\\), \\(x\\) is **always** an integer (i.e., \\(x\\) has no decimal digits). If \\(n <= 0\\), the rounded value is \\(x\\).
*
* 5.  If \\(n < -38\\), we let \\(m = n + 38\\) and modify the above formula to avoid overflow.
*
*     ```tex
*     \\operatorname{roundnf}(x,n) = \\frac{\\biggl(\\frac{\\operatorname{roundf}( (x \\cdot 10^{38}) 10^{-m})}{10^{38}}\\biggr)}{10^{-m}}
*     ```
*
*     If overflow occurs, the rounded value is \\(x\\).
*
* ## Special Cases
*
* ```tex
* \\begin{align*}
* \\operatorname{roundnf}(\\mathrm{NaN}, n) &= \\mathrm{NaN} \\\\
* \\operatorname{roundnf}(x, \\mathrm{NaN}) &= \\mathrm{NaN} \\\\
* \\operatorname{roundnf}(x, \\pm\\infty) &= \\mathrm{NaN} \\\\
* \\operatorname{roundnf}(\\pm\\infty, n) &= \\pm\\infty \\\\
* \\operatorname{roundnf}(\\pm 0, n) &= \\pm 0
* \\end{align*}
* ```
*
* @param {number} x - input value
* @param {integer} n - integer power of `10`
* @returns {number} rounded value
*
* @example
* // Round a value to 2 decimal places:
* var v = roundnf( 3.1415927410125732, -2 );
* // returns ~3.14
*
* @example
* // If n = 0, `roundnf` behaves like `roundf`:
* var v = roundnf( 3.1415927410125732, 0 );
* // returns 3.0
*
* @example
* // Round a value to the nearest thousand:
* var v = roundnf( 12368.0, 3 );
* // returns ~12000.0
*/
function roundnf( x, n ) {
	var s;
	var y;
 
	x = f32( x );
	if (
		isnanf( x ) ||
		isnanf( n ) ||
		isInfinitef( n )
	) {
		return NaN;
	}
	if (
		// Handle infinities...
		isInfinitef( x ) ||
 
		// Handle +-0...
		x === 0.0 ||
 
		// If `n` exceeds the maximum number of feasible decimal places (such as with subnormal numbers), nothing to round...
		n < MIN_EXP_SUBNORMAL ||
 
		// If `|x|` is large enough, no decimals to round...
		( absf( x ) > MAX_INT && n <= 0 )
	) {
		return x;
	}
	// The maximum absolute single-precision float is ~3.4e38. Accordingly, any possible finite `x` rounded to the nearest >=10^39 is 0.0.
	if ( n > MAX_EXP ) {
		return f32( f32( 0.0 ) * x ); // preserve the sign (same behavior as roundf)
	}
	// If we overflow, return `x`, as the number of digits to the right of the decimal is too small (i.e., `x` is too large / lacks sufficient fractional precision) for there to be any effect when rounding...
	if ( n < MIN_EXP ) {
		s = powf( f32( 10.0 ), -( n + MAX_EXP ) );
		y = f32( f32( x * HUGE ) * s ); // order of operation matters!
		if ( isInfinitef( y ) ) {
			return x;
		}
		return f32( f32( roundf( y ) / HUGE ) / s );
	}
	s = powf( f32( 10.0 ), -n );
	y = f32( x * s );
	if ( isInfinitef( y ) ) {
		return x;
	}
	return f32( roundf( y ) / s );
}
 
 
// EXPORTS //
 
module.exports = roundnf;