All files assign.js

100% Statements 147/147
100% Branches 19/19
100% Functions 1/1
100% Lines 147/147

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 1483x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 150x 150x 150x 150x 150x 150x 150x 150x 40x 40x 150x 20x 20x 90x 90x 150x 66x 66x 34x 34x 66x 56x 150x 40x 40x 56x 56x 56x 150x 24x 4x 4x 20x 20x 24x 8x 8x 150x 32x 20x 20x 12x 12x 24x 24x 24x 150x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isInteger = require( '@stdlib/assert/is-integer' ).isPrimitive;
var isIntegerDataType = require( '@stdlib/ndarray/base/assert/is-integer-data-type' );
var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' );
var unaryReduceSubarray = require( '@stdlib/ndarray/base/unary-reduce-subarray' );
var ndims = require( '@stdlib/ndarray/ndims' );
var base = require( '@stdlib/ndarray/base/some' );
var getDtype = require( '@stdlib/ndarray/dtype' );
var getShape = require( '@stdlib/ndarray/shape' ); // note: non-base accessor is intentional due to the input arrays originating in userland
var getOrder = require( '@stdlib/ndarray/base/order' );
var defaults = require( '@stdlib/ndarray/defaults' );
var maybeBroadcastArray = require( '@stdlib/ndarray/base/maybe-broadcast-array' );
var broadcastScalar = require( '@stdlib/ndarray/base/broadcast-scalar' );
var objectAssign = require( '@stdlib/object/assign' );
var zeroTo = require( '@stdlib/array/base/zero-to' );
var format = require( '@stdlib/string/format' );
var DEFAULTS = require( './defaults.json' );
var validate = require( './validate.js' );
 
 
// VARIABLES //
 
var DEFAULT_DTYPE = defaults.get( 'dtypes.integer_index' );
 
 
// MAIN //
 
/**
* Tests whether at least `n` elements along one or more ndarray dimensions are truthy and assigns the results to an output ndarray.
*
* @param {ndarray} x - input ndarray
* @param {(ndarray|integer)} n - number of elements which must be truthy
* @param {ndarray} y - output ndarray
* @param {Options} [options] - function options
* @param {IntegerArray} [options.dims] - list of dimensions over which to perform a reduction
* @throws {TypeError} first argument must be an ndarray-like object
* @throws {Error} second argument must be broadcast-compatible with the non-reduced dimensions of the input ndarray
* @throws {TypeError} third argument must be an ndarray-like object
* @throws {TypeError} options argument must be an object
* @throws {Error} must provide valid options
* @returns {ndarray} output ndarray
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var ndarray = require( '@stdlib/ndarray/ctor' );
* var empty = require( '@stdlib/ndarray/empty' );
*
* // Create a data buffer:
* var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
*
* // Define the shape of the input array:
* var shape = [ 3, 1, 2 ];
*
* // Define the array strides:
* var sx = [ 4, 4, 1 ];
*
* // Define the index offset:
* var ox = 1;
*
* // Create an input ndarray:
* var x = new ndarray( 'float64', xbuf, shape, sx, ox, 'row-major' );
*
* // Create an output ndarray:
* var y = empty( [], {
*     'dtype': 'bool'
* });
*
* // Perform reduction:
* var out = assign( x, 6, y );
* // returns <ndarray>
*
* var v = out.get();
* // returns true
*/
function assign( x, n, y, options ) {
	var opts;
	var err;
	var ord;
	var N;
	var v;
 
	if ( !isndarrayLike( x ) ) {
		throw new TypeError( format( 'invalid argument. First argument must be an ndarray-like object. Value: `%s`.', x ) );
	}
	if ( !isndarrayLike( y ) ) {
		throw new TypeError( format( 'invalid argument. Third argument must be an ndarray-like object. Value: `%s`.', y ) );
	}
	N = ndims( x );
	opts = objectAssign( {}, DEFAULTS );
	if ( arguments.length > 3 ) {
		err = validate( opts, N, options );
		if ( err ) {
			throw err;
		}
	}
	// When a list of dimensions is not provided, reduce the entire input array across all dimensions...
	if ( opts.dims === null ) {
		opts.dims = zeroTo( N );
	}
	// Resolve input array meta data:
	ord = getOrder( x );
 
	if ( isndarrayLike( n ) ) {
		if ( !isIntegerDataType( getDtype( n ) ) ) {
			throw new TypeError( format( 'invalid argument. Second argument must have an integer data type. Value: `%s`.', n ) );
		}
		try {
			v = maybeBroadcastArray( n, getShape( y ) );
		} catch ( err ) { // eslint-disable-line no-unused-vars
			throw new Error( 'invalid argument. Second argument must be broadcast-compatible with the non-reduced dimensions of the input array.' );
		}
	} else {
		if ( !isInteger( n ) ) {
			throw new TypeError( format( 'invalid argument. Second argument must be an integer or an ndarray-like object. Value: `%s`.', n ) );
		}
		v = broadcastScalar( n, DEFAULT_DTYPE, getShape( y ), ord );
	}
	// Perform the reduction:
	unaryReduceSubarray( base, [ x, y, v ], opts.dims ); // note: we assume that this lower-level function handles further validation of the output ndarray (e.g., expected shape, etc)
	return y;
}
 
 
// EXPORTS //
 
module.exports = assign;