All files main.js

100% Statements 217/217
100% Branches 32/32
100% Functions 1/1
100% Lines 217/217

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 2182x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 344x 344x 344x 344x 344x 344x 344x 344x 344x 344x 344x 344x 344x 344x 344x 344x 344x 344x 344x 80x 80x 264x 344x 42x 18x 18x 24x 24x 222x 222x 54x 54x 54x 54x 18x 18x 36x 36x 168x 168x 18x 18x 18x 150x 150x 114x 114x 114x 114x 36x 36x 36x 36x 192x 192x 192x 192x 344x 150x 150x 84x 84x 150x 108x 344x 74x 74x 108x 108x 108x 108x 108x 108x 108x 108x 108x 344x 46x 8x 8x 38x 38x 46x 16x 16x 344x 62x 40x 40x 22x 22x 44x 44x 44x 44x 44x 44x 44x 44x 44x 44x 44x 44x 44x 344x 16x 16x 44x 344x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isFunction = require( '@stdlib/assert/is-function' );
var isInteger = require( '@stdlib/assert/is-integer' ).isPrimitive;
var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' );
var isIntegerDataType = require( '@stdlib/ndarray/base/assert/is-integer-data-type' );
var unaryReduceSubarrayBy = require( '@stdlib/ndarray/base/unary-reduce-subarray-by' );
var base = require( '@stdlib/ndarray/base/some-by' );
var spreadDimensions = require( '@stdlib/ndarray/base/spread-dimensions' );
var indicesComplement = require( '@stdlib/array/base/indices-complement' );
var getDtype = require( '@stdlib/ndarray/dtype' );
var getShape = require( '@stdlib/ndarray/shape' ); // note: non-base accessor is intentional due to the input array originating in userland
var getOrder = require( '@stdlib/ndarray/base/order' );
var getData = require( '@stdlib/ndarray/base/data-buffer' );
var getStrides = require( '@stdlib/ndarray/base/strides' );
var getOffset = require( '@stdlib/ndarray/base/offset' );
var defaults = require( '@stdlib/ndarray/defaults' );
var empty = require( '@stdlib/ndarray/empty' );
var ndarrayCtor = require( '@stdlib/ndarray/base/ctor' );
var maybeBroadcastArray = require( '@stdlib/ndarray/base/maybe-broadcast-array' );
var broadcastScalar = require( '@stdlib/ndarray/base/broadcast-scalar' );
var reinterpretBoolean = require( '@stdlib/strided/base/reinterpret-boolean' );
var takeIndexed = require( '@stdlib/array/base/take-indexed' );
var zeroTo = require( '@stdlib/array/base/zero-to' );
var objectAssign = require( '@stdlib/object/assign' );
var format = require( '@stdlib/string/format' );
var DEFAULTS = require( './defaults.json' );
var validate = require( './validate.js' );
 
 
// VARIABLES //
 
var DEFAULT_DTYPE = defaults.get( 'dtypes.integer_index' );
 
 
// MAIN //
 
/**
* Tests whether at least `n` elements along one or more ndarray dimensions pass a test implemented by a predicate function.
*
* @param {ndarray} x - input ndarray
* @param {(ndarray|integer)} n - number of elements which must pass a test
* @param {Options} [options] - function options
* @param {IntegerArray} [options.dims] - list of dimensions over which to perform a reduction
* @param {boolean} [options.keepdims=false] - boolean indicating whether the reduced dimensions should be included in the returned ndarray as singleton dimensions
* @param {Function} predicate - predicate function
* @param {*} [thisArg] - predicate function execution context
* @throws {TypeError} first argument must be an ndarray-like object
* @throws {TypeError} second argument must be an ndarray-like object or a scalar value
* @throws {TypeError} options argument must be an object
* @throws {TypeError} callback argument must be a function
* @throws {RangeError} dimension indices must not exceed input ndarray bounds
* @throws {Error} dimension indices must be unique
* @throws {Error} must provide valid options
* @returns {ndarray} output ndarray
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var isEven = require( '@stdlib/assert/is-even' ).isPrimitive;
* var ndarray = require( '@stdlib/ndarray/ctor' );
*
* // Create a data buffer:
* var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
*
* // Define the shape of the input array:
* var sh = [ 3, 1, 2 ];
*
* // Define the array strides:
* var sx = [ 4, 4, 1 ];
*
* // Define the index offset:
* var ox = 1;
*
* // Create an input ndarray:
* var x = new ndarray( 'float64', xbuf, sh, sx, ox, 'row-major' );
*
* // Perform reduction:
* var out = someBy( x, 3, isEven );
* // returns <ndarray>
*
* var v = out.get();
* // returns true
*/
function someBy( x, n, options, predicate, thisArg ) {
	var nargs;
	var opts;
	var view;
	var ctx;
	var err;
	var idx;
	var shx;
	var shy;
	var ord;
	var flg;
	var cb;
	var N;
	var v;
	var y;
	var o;
 
	nargs = arguments.length;
	if ( !isndarrayLike( x ) ) {
		throw new TypeError( format( 'invalid argument. First argument must be an ndarray-like object. Value: `%s`.', x ) );
	}
	// Case: someBy( x, n, predicate )
	if ( nargs < 4 ) {
		if ( !isFunction( options ) ) {
			throw new TypeError( format( 'invalid argument. Third argument must be a function. Value: `%s`.', options ) );
		}
		cb = options;
	}
	// Case: someBy( x, n, options, predicate, thisArg )
	else if ( nargs > 4 ) {
		flg = true;
		o = options;
		cb = predicate;
		if ( !isFunction( cb ) ) {
			throw new TypeError( format( 'invalid argument. Fourth argument must be a function. Value: `%s`.', cb ) );
		}
		ctx = thisArg;
	}
	// Case: someBy( x, n, predicate, thisArg )
	else if ( isFunction( options ) ) {
		cb = options;
		ctx = predicate;
	}
	// Case: someBy( x, n, options, predicate )
	else if ( isFunction( predicate ) ) {
		flg = true;
		o = options;
		cb = predicate;
	}
	// Case: someBy( x, n, ???, ??? )
	else {
		throw new TypeError( format( 'invalid argument. Fourth argument must be a function. Value: `%s`.', predicate ) );
	}
	shx = getShape( x );
	N = shx.length;
 
	opts = objectAssign( {}, DEFAULTS );
	if ( flg ) {
		err = validate( opts, N, o );
		if ( err ) {
			throw err;
		}
	}
	// When a list of dimensions is not provided, reduce the entire input array across all dimensions...
	if ( opts.dims === null ) {
		opts.dims = zeroTo( N );
	}
	// Resolve the list of non-reduced dimensions:
	idx = indicesComplement( N, opts.dims );
 
	// Resolve the output array shape:
	shy = takeIndexed( shx, idx );
 
	// Resolve input array meta data:
	ord = getOrder( x );
 
	if ( isndarrayLike( n ) ) {
		if ( !isIntegerDataType( getDtype( n ) ) ) {
			throw new TypeError( format( 'invalid argument. Second argument must have an integer data type. Value: `%s`.', n ) );
		}
		try {
			v = maybeBroadcastArray( n, shy );
		} catch ( err ) { // eslint-disable-line no-unused-vars
			throw new Error( 'invalid argument. Second argument must be broadcast-compatible with the non-reduced dimensions of the input array.' );
		}
	} else {
		if ( !isInteger( n ) ) {
			throw new TypeError( format( 'invalid argument. Second argument must be an integer or an ndarray-like object. Value: `%s`.', n ) );
		}
		v = broadcastScalar( n, DEFAULT_DTYPE, shy, ord );
	}
	// Initialize an output array whose shape matches that of the non-reduced dimensions and which has the same memory layout as the input array:
	y = empty( shy, {
		'dtype': 'bool',
		'order': ord
	});
 
	// Reinterpret the output array as an "indexed" array to ensure faster element access:
	view = new ndarrayCtor( 'uint8', reinterpretBoolean( getData( y ), 0 ), shy, getStrides( y, false ), getOffset( y ), getOrder( y ) );
 
	// Perform the reduction:
	unaryReduceSubarrayBy( base, [ x, view, v ], opts.dims, cb, ctx );
 
	// Check whether we need to reinsert singleton dimensions which can be useful for broadcasting the returned output array to the shape of the original input array...
	if ( opts.keepdims ) {
		y = spreadDimensions( N, y, idx, false );
	}
	return y;
}
 
 
// EXPORTS //
 
module.exports = someBy;