All files assign.js

65.97% Statements 95/144
100% Branches 1/1
0% Functions 0/1
65.97% Lines 95/144

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 1451x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                                                                   1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isScalarMostlySafeCompatible = require( '@stdlib/ndarray/base/assert/is-scalar-mostly-safe-compatible' ); // eslint-disable-line id-length
var isMostlySafeCast = require( '@stdlib/ndarray/base/assert/is-mostly-safe-data-type-cast' );
var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' );
var unaryReduceSubarray = require( '@stdlib/ndarray/base/unary-reduce-subarray' );
var ndims = require( '@stdlib/ndarray/ndims' );
var base = require( '@stdlib/ndarray/base/includes' );
var getShape = require( '@stdlib/ndarray/shape' ); // note: non-base accessor is intentional due to the input arrays originating in userland
var getOrder = require( '@stdlib/ndarray/base/order' );
var getDType = require( '@stdlib/ndarray/base/dtype' );
var maybeBroadcastArray = require( '@stdlib/ndarray/base/maybe-broadcast-array' );
var broadcastScalar = require( '@stdlib/ndarray/base/broadcast-scalar' );
var objectAssign = require( '@stdlib/object/assign' );
var zeroTo = require( '@stdlib/array/base/zero-to' );
var format = require( '@stdlib/string/format' );
var defaults = require( './defaults.json' );
var validate = require( './validate.js' );
 
 
// MAIN //
 
/**
* Tests whether an ndarray contains a specified value along one or more dimensions and assigns the results to a provided output ndarray.
*
* @param {ndarray} x - input ndarray
* @param {(ndarray|*)} searchElement - search element
* @param {ndarray} y - output ndarray
* @param {Options} [options] - function options
* @param {IntegerArray} [options.dims] - list of dimensions over which to perform a reduction
* @throws {TypeError} first argument must be an ndarray-like object
* @throws {Error} second argument must be broadcast-compatible with the non-reduced dimensions of the input ndarray
* @throws {TypeError} second argument must have a data type which can be safely cast to the data type of the input ndarray
* @throws {TypeError} third argument must be an ndarray-like object
* @throws {TypeError} options argument must be an object
* @throws {Error} must provide valid options
* @returns {ndarray} output ndarray
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var ndarray = require( '@stdlib/ndarray/ctor' );
* var empty = require( '@stdlib/ndarray/empty' );
*
* // Create a data buffer:
* var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
*
* // Define the shape of the input array:
* var shape = [ 3, 1, 2 ];
*
* // Define the array strides:
* var sx = [ 4, 4, 1 ];
*
* // Define the index offset:
* var ox = 1;
*
* // Create an input ndarray:
* var x = new ndarray( 'float64', xbuf, shape, sx, ox, 'row-major' );
*
* // Create an output ndarray:
* var y = empty( [], {
*     'dtype': 'bool'
* });
*
* // Perform reduction:
* var out = assign( x, 6.0, y );
* // returns <ndarray>
*
* var v = out.get();
* // returns true
*/
function assign( x, searchElement, y, options ) {
	var opts;
	var err;
	var ord;
	var dt;
	var N;
	var v;

	if ( !isndarrayLike( x ) ) {
		throw new TypeError( format( 'invalid argument. First argument must be an ndarray-like object. Value: `%s`.', x ) );
	}
	if ( !isndarrayLike( y ) ) {
		throw new TypeError( format( 'invalid argument. Third argument must be an ndarray-like object. Value: `%s`.', y ) );
	}
	N = ndims( x );

	opts = objectAssign( {}, defaults );
	if ( arguments.length > 3 ) {
		err = validate( opts, N, options );
		if ( err ) {
			throw err;
		}
	}
	if ( opts.dims === null ) {
		opts.dims = zeroTo( N );
	}
	// Resolve input array meta data:
	dt = getDType( x );
	ord = getOrder( x );

	// Determine how to broadcast the search element...
	if ( isndarrayLike( searchElement ) ) {
		if ( !isMostlySafeCast( getDType( searchElement ), dt ) ) {
			throw new TypeError( format( 'invalid argument. Second argument cannot be safely cast to the input array data type. Value: `%s`.', searchElement ) );
		}
		try {
			v = maybeBroadcastArray( searchElement, getShape( y ) );
		} catch ( err ) { // eslint-disable-line no-unused-vars
			throw new Error( 'invalid argument. Second argument must be broadcast-compatible with the non-reduced dimensions of the input array.' );
		}
	} else if ( isScalarMostlySafeCompatible( searchElement, dt ) ) {
		v = broadcastScalar( searchElement, dt, getShape( y ), ord );
	} else {
		throw new TypeError( format( 'invalid argument. Second argument cannot be safely cast to the input array data type. Value: `%s`.', searchElement ) );
	}
	// Perform the reduction:
	unaryReduceSubarray( base, [ x, y, v ], opts.dims ); // note: we assume that this lower-level function handles further validation of the output ndarray (e.g., expected shape, etc)
	return y;
}
 
 
// EXPORTS //
 
module.exports = assign;