Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 59x 59x 59x 59x 59x 59x 59x 59x 59x 59x 59x 20x 20x 39x 39x 39x 39x 59x 37x 37x 33x 33x 37x 6x 59x 2x 2x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 59x 2x 2x 6x 59x 2x 2x 2x 2x 2x | /**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' );
var unaryReduceSubarray = require( '@stdlib/ndarray/base/unary-reduce-subarray' );
var base = require( '@stdlib/ndarray/base/any' );
var spreadDimensions = require( '@stdlib/ndarray/base/spread-dimensions' );
var indicesComplement = require( '@stdlib/array/base/indices-complement' );
var getShape = require( '@stdlib/ndarray/shape' ); // note: non-base accessor is intentional due to the input array originating in userland
var getOrder = require( '@stdlib/ndarray/base/order' );
var getData = require( '@stdlib/ndarray/base/data-buffer' );
var getStrides = require( '@stdlib/ndarray/base/strides' );
var getOffset = require( '@stdlib/ndarray/base/offset' );
var empty = require( '@stdlib/ndarray/empty' );
var ndarrayCtor = require( '@stdlib/ndarray/base/ctor' );
var reinterpretBoolean = require( '@stdlib/strided/base/reinterpret-boolean' );
var takeIndexed = require( '@stdlib/array/base/take-indexed' );
var zeroTo = require( '@stdlib/array/base/zero-to' );
var objectAssign = require( '@stdlib/object/assign' );
var format = require( '@stdlib/string/format' );
var defaults = require( './defaults.json' );
var validate = require( './validate.js' );
// MAIN //
/**
* Tests whether at least one element along one or more ndarray dimensions is truthy.
*
* @param {ndarray} x - input ndarray
* @param {Options} [options] - function options
* @param {IntegerArray} [options.dims] - list of dimensions over which to perform a reduction
* @param {boolean} [options.keepdims=false] - boolean indicating whether the reduced dimensions should be included in the returned ndarray as singleton dimensions
* @throws {TypeError} first argument must be an ndarray-like object
* @throws {TypeError} options argument must be an object
* @throws {RangeError} dimension indices must not exceed input ndarray bounds
* @throws {Error} dimension indices must be unique
* @throws {Error} must provide valid options
* @returns {ndarray} output ndarray
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var ndarray = require( '@stdlib/ndarray/ctor' );
*
* // Create a data buffer:
* var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
*
* // Define the shape of the input array:
* var sh = [ 3, 1, 2 ];
*
* // Define the array strides:
* var sx = [ 4, 4, 1 ];
*
* // Define the index offset:
* var ox = 1;
*
* // Create an input ndarray:
* var x = new ndarray( 'float64', xbuf, sh, sx, ox, 'row-major' );
*
* // Perform reduction:
* var out = any( x );
* // returns <ndarray>[ true ]
*/
function any( x, options ) {
var opts;
var view;
var err;
var idx;
var shx;
var shy;
var N;
var y;
if ( !isndarrayLike( x ) ) {
throw new TypeError( format( 'invalid argument. First argument must be an ndarray-like object. Value: `%s`.', x ) );
}
shx = getShape( x );
N = shx.length;
opts = objectAssign( {}, defaults );
if ( arguments.length > 1 ) {
err = validate( opts, N, options );
if ( err ) {
throw err;
}
}
// When a list of dimensions is not provided, reduce the entire input array across all dimensions...
if ( opts.dims === null ) {
opts.dims = zeroTo( N );
}
// Resolve the list of non-reduced dimensions:
idx = indicesComplement( N, opts.dims );
// Resolve the output array shape:
shy = takeIndexed( shx, idx );
// Initialize an output array whose shape matches that of the non-reduced dimensions and which has the same memory layout as the input array:
y = empty( shy, {
'dtype': 'bool',
'order': getOrder( x )
});
// Reinterpret the output array as an "indexed" array to ensure faster element access:
view = new ndarrayCtor( 'uint8', reinterpretBoolean( getData( y ), 0 ), shy, getStrides( y, false ), getOffset( y ), getOrder( y ) );
// Perform the reduction:
unaryReduceSubarray( base, [ x, view ], opts.dims );
// Check whether we need to reinsert singleton dimensions which can be useful for broadcasting the returned output array to the shape of the original input array...
if ( opts.keepdims ) {
y = spreadDimensions( N, y, idx, false );
}
return y;
}
// EXPORTS //
module.exports = any;
|