Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 84x 84x 84x 84x 84x 84x 84x 84x 84x 41x 41x 84x 1x 1x 42x 42x 42x 42x 42x 42x 42x 42x 42x 42x 84x 37x 16x 16x 21x 37x 13x 13x 37x 2x 2x 37x 26x 26x 84x 3x 3x 23x 23x 23x 84x 6x 6x 84x 17x 17x 17x 84x 3x 3x 3x 3x 3x | /**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var hasOwnProp = require( '@stdlib/assert/has-own-property' );
var isPlainObject = require( '@stdlib/assert/is-plain-object' );
var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' );
var broadcastScalar = require( '@stdlib/ndarray/base/broadcast-scalar' );
var maybeBroadcastArray = require( '@stdlib/ndarray/base/maybe-broadcast-array' );
var nonCoreShape = require( '@stdlib/ndarray/base/complement-shape' );
var getDType = require( '@stdlib/ndarray/dtype' );
var getShape = require( '@stdlib/ndarray/shape' );
var getOrder = require( '@stdlib/ndarray/order' );
var format = require( '@stdlib/string/format' );
var base = require( './base.js' );
// MAIN //
/**
* Returns an ndarray created by joining elements using a specified separator along an ndarray dimension.
*
* @param {ndarrayLike} x - input ndarray
* @param {(ndarrayLike|*)} separator - separator
* @param {Options} [options] - function options
* @param {integer} [options.dim=-1] - dimension over which to perform operation
* @param {boolean} [options.keepdims=false] - boolean indicating whether the reduced dimensions should be included in the returned ndarray as singleton dimensions
* @throws {TypeError} first argument must be an ndarray-like object
* @throws {TypeError} second argument must be either an ndarray-like object or a scalar value
* @throws {TypeError} options argument must be an object
* @throws {RangeError} dimension index must not exceed input ndarray bounds
* @throws {RangeError} first argument must have at least one dimension
* @throws {Error} must provide valid options
* @returns {ndarray} output ndarray
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var ndarray2array = require( '@stdlib/ndarray/to-array' );
* var ndarray = require( '@stdlib/ndarray/ctor' );
*
* // Create a data buffer:
* var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
*
* // Define the shape of the input array:
* var sh = [ 2, 3 ];
*
* // Define the array strides:
* var sx = [ 3, 1 ];
*
* // Define the index offset:
* var ox = 0;
*
* // Create an input ndarray:
* var x = new ndarray( 'float64', xbuf, sh, sx, ox, 'row-major' );
*
* // Perform operation:
* var out = join( x, ',' );
* // returns <ndarray>
*
* var arr = ndarray2array( out );
* // returns [ '1,2,3', '4,5,6' ]
*/
function join( x, separator, options ) {
var nargs;
var opts;
var ord;
var sh;
var s;
nargs = arguments.length;
if ( !isndarrayLike( x ) ) {
throw new TypeError( format( 'invalid argument. First argument must be an ndarray-like object. Value: `%s`.', x ) );
}
if ( nargs < 2 ) {
throw new TypeError( format( 'invalid argument. Second argument must be either an ndarray-like object or a scalar value. Value: `%s`.', separator ) );
}
// Resolve input ndarray meta data:
ord = getOrder( x );
// Initialize an options object:
opts = {
'dims': [ -1 ], // default behavior is to perform a reduction over the last dimension
'dtype': 'generic', // default behavior is to always return a generic ndarray
'keepdims': false
};
if ( nargs > 2 ) {
if ( !isPlainObject( options ) ) {
throw new TypeError( format( 'invalid argument. Options argument must be an object. Value: `%s`.', options ) );
}
// Resolve provided options...
if ( hasOwnProp( options, 'dim' ) ) {
opts.dims[ 0 ] = options.dim;
}
if ( hasOwnProp( options, 'keepdims' ) ) {
opts.keepdims = options.keepdims;
}
}
// Resolve the list of non-reduced dimensions:
sh = getShape( x );
if ( sh.length < 1 ) {
throw new RangeError( 'invalid argument. First argument must have at least one dimension.' );
}
sh = nonCoreShape( sh, opts.dims );
// Broadcast the separator to match the shape of the non-reduced dimensions...
if ( isndarrayLike( separator ) ) {
if ( getDType( separator ) !== 'generic' ) {
throw new TypeError( format( 'invalid argument. Second argument must have a generic data type. Value: `%s`.', separator ) );
}
s = maybeBroadcastArray( separator, sh );
} else {
s = broadcastScalar( separator, 'generic', sh, ord );
}
return base( x, s, opts );
}
// EXPORTS //
module.exports = join;
|