All files assign.js

97.33% Statements 146/150
88.88% Branches 16/18
100% Functions 1/1
97.33% Lines 146/150

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1513x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 103x 103x 103x 103x 103x 103x 103x 103x 103x 41x 41x 103x 2x 2x 60x 60x 60x 103x     40x 40x 40x 40x 40x 40x 103x 35x 16x 16x 19x 35x 13x 13x 35x 24x 24x 103x 3x 3x 21x 21x 21x 103x 6x     6x 103x 15x 15x 15x 103x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var hasOwnProp = require( '@stdlib/assert/has-own-property' );
var isPlainObject = require( '@stdlib/assert/is-plain-object' );
var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' );
var broadcastScalar = require( '@stdlib/ndarray/base/broadcast-scalar' );
var maybeBroadcastArray = require( '@stdlib/ndarray/base/maybe-broadcast-array' );
var nonCoreShape = require( '@stdlib/ndarray/base/complement-shape' );
var getDType = require( '@stdlib/ndarray/dtype' );
var getShape = require( '@stdlib/ndarray/shape' );
var getOrder = require( '@stdlib/ndarray/order' );
var format = require( '@stdlib/string/format' );
var base = require( './base.js' ).assign;
 
 
// MAIN //
 
/**
* Joins elements of an input ndarray using a specified separator along an ndarray dimension and assigns the results to a provided output ndarray.
*
* @param {ndarrayLike} x - input ndarray
* @param {(ndarrayLike|*)} separator - separator
* @param {ndarrayLike} out - output ndarray
* @param {Options} [options] - function options
* @param {integer} [options.dim=-1] - dimension over which to perform operation
* @throws {TypeError} function must be provided at least three arguments
* @throws {TypeError} first argument must be an ndarray-like object
* @throws {TypeError} second argument must be either an ndarray-like object or a scalar value
* @throws {TypeError} third argument must be an ndarray-like object
* @throws {TypeError} third argument must be an ndarray-like object having the generic data type
* @throws {TypeError} options argument must be an object
* @throws {RangeError} dimension index must not exceed input ndarray bounds
* @throws {RangeError} first argument must have at least one dimension
* @throws {Error} must provide valid options
* @returns {ndarray} output ndarray
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var empty = require( '@stdlib/ndarray/empty' );
* var ndarray2array = require( '@stdlib/ndarray/to-array' );
* var ndarray = require( '@stdlib/ndarray/ctor' );
*
* // Create data buffers:
* var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
*
* // Define the shape of the input array:
* var shape = [ 2, 3 ];
*
* // Define the array strides:
* var strides = [ 3, 1 ];
*
* // Define the index offset:
* var offset = 0;
*
* // Create an input ndarray:
* var x = new ndarray( 'float64', xbuf, shape, strides, offset, 'row-major' );
*
* // Create an output ndarray:
* var y = empty( [ 2 ], {
*     'dtype': 'generic'
* });
*
* // Perform operation:
* var out = assign( x, ',', y );
* // returns <ndarray>
*
* var bool = ( out === y );
* // returns true
*
* var arr = ndarray2array( out );
* // returns [ '1,2,3', '4,5,6' ]
*/
function assign( x, separator, out, options ) {
	var nargs;
	var opts;
	var ord;
	var sh;
	var s;
 
	nargs = arguments.length;
	if ( !isndarrayLike( x ) ) {
		throw new TypeError( format( 'invalid argument. First argument must be an ndarray-like object. Value: `%s`.', x ) );
	}
	if ( nargs < 3 ) {
		throw new TypeError( format( 'invalid argument. Third argument must be an ndarray-like object. Value: `%s`.', out ) );
	}
	// Resolve input ndarray meta data:
	ord = getOrder( x );
 
	if ( getDType( out ) !== 'generic' ) {
		throw new TypeError( format( 'invalid argument. Third argument must be an ndarray-like object having the generic data type. Value: `%s`.', out ) );
	}
 
	// Initialize an options object:
	opts = {
		'dims': [ -1 ] // default behavior is to perform a reduction over the last dimension
	};
 
	if ( nargs > 3 ) {
		if ( !isPlainObject( options ) ) {
			throw new TypeError( format( 'invalid argument. Options argument must be an object. Value: `%s`.', options ) );
		}
		// Resolve provided options...
		if ( hasOwnProp( options, 'dim' ) ) {
			opts.dims[ 0 ] = options.dim;
		}
	}
	// Resolve the list of non-reduced dimensions:
	sh = getShape( x );
	if ( sh.length < 1 ) {
		throw new RangeError( 'invalid argument. First argument must have at least one dimension.' );
	}
	sh = nonCoreShape( sh, opts.dims );
 
	// Broadcast the separator to match the shape of the non-reduced dimensions...
	if ( isndarrayLike( separator ) ) {
		if ( getDType( separator ) !== 'generic' ) {
			throw new TypeError( format( 'invalid argument. Second argument must have a generic data type. Value: `%s`.', separator ) );
		}
		s = maybeBroadcastArray( separator, sh );
	} else {
		s = broadcastScalar( separator, 'generic', sh, ord );
	}
	return base( x, s, out, opts );
}
 
 
// EXPORTS //
 
module.exports = assign;