All files main.js

100% Statements 73/73
100% Branches 8/8
100% Functions 1/1
100% Lines 73/73

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 741x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 4534x 4534x 4534x 4534x 4534x 4530x 4534x 7x 7x 4534x 2264x 2264x 2263x 2263x 4534x 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isinfinitef = require( '@stdlib/math/base/assert/is-infinitef' );
var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
var lnf = require( '@stdlib/math/base/special/lnf' );
var sqrtf = require( '@stdlib/math/base/special/sqrtf' );
var f32 = require( '@stdlib/number/float64/base/to-float32' );
 
 
// MAIN //
 
/**
* Computes the hyperbolic arcsine of a single-precision floating-point number.
*
* @param {number} x - input value
* @returns {number} hyperbolic arcsine (in radians)
*
* @example
* var v = asinhf( 0.0 );
* // returns 0.0
*
* @example
* var v = asinhf( 2.0 );
* // returns ~1.444
*
* @example
* var v = asinhf( -2.0 );
* // returns ~-1.444
*
* @example
* var v = asinhf( NaN );
* // returns NaN
*/
function asinhf( x ) {
	x = f32( x );
	if (
		x === f32( 0.0 ) || // +-0.0
		isnanf( x ) ||
		isinfinitef( x )
	) {
		return x;
	}
	if ( x > f32( 0.0 ) ) {
		return lnf( f32( x + sqrtf( f32( x*x ) + f32( 1.0 ) ) ) );
	}
	// Better precision for large negative `x`:
	return -lnf( f32( -x + sqrtf( f32( x*x ) + f32( 1.0 ) ) ) );
}
 
 
// EXPORTS //
 
module.exports = asinhf;