All files main.js

98.9% Statements 181/183
94.11% Branches 16/17
100% Functions 2/2
98.9% Lines 181/183

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 1843x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 84x 84x 84x 20x 20x 84x 37x 37x 27x 84x 25x 25x 2x 84x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 96x 96x 96x 20x 20x 96x     96x 20x 20x 56x 96x 47x 47x 9x 96x 3x 3x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isNdarrayLike = require( '@stdlib/assert/is-ndarray-like' );
var format = require( '@stdlib/string/format' );
var maybeBroadcastArrays = require( '@stdlib/ndarray/base/maybe-broadcast-arrays' );
var base = require( './base.js' );
 
 
// MAIN //
 
/**
* Computes the maximum value along one or more ndarray dimensions according to a mask.
*
* @param {ndarray} x - input ndarray
* @param {ndarray} mask - mask ndarray
* @param {Options} [options] - function options
* @param {IntegerArray} [options.dims] - list of dimensions over which to perform a reduction
* @param {boolean} [options.keepdims=false] - boolean indicating whether the reduced dimensions should be included in the returned ndarray as singleton dimensions
* @param {string} [options.dtype] - output ndarray data type
* @throws {TypeError} first argument must be an ndarray-like object
* @throws {TypeError} second argument must be an ndarray-like object
* @throws {TypeError} options argument must be an object
* @throws {RangeError} dimension indices must not exceed input ndarray bounds
* @throws {RangeError} number of dimension indices must not exceed the number of input ndarray dimensions
* @throws {Error} must provide valid options
* @returns {ndarray} output ndarray
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var Uint8Array = require( '@stdlib/array/uint8' );
* var ndarray = require( '@stdlib/ndarray/ctor' );
*
* // Create a data buffer:
* var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
*
* // Create a mask buffer:
* var mbuf = new Uint8Array( [ 0, 0, 0, 1, 0, 1 ] );
*
* // Define the shape of the input array:
* var sh = [ 3, 2 ];
*
* // Define the array strides:
* var sx = [ 2, 1 ];
* var sm = [ 2, 1 ];
*
* // Define the index offset:
* var ox = 0;
* var om = 0;
*
* // Create the input ndarray:
* var x = new ndarray( 'float64', xbuf, sh, sx, ox, 'row-major' );
*
* // Create the mask ndarray:
* var mask = new ndarray( 'uint8', mbuf, sh, sm, om, 'row-major' ); // cspell:disable-line
*
* // Perform reduction:
* var out = mskmax( x, mask );
* // returns <ndarray>
*
* var v = out.get();
* // returns 5.0
*/
function mskmax( x, mask ) {
	var arrs;
	if ( !isNdarrayLike( x ) ) {
		throw new TypeError( format( 'invalid argument. First argument must be an ndarray-like object. Value: `%s`.', x ) );
	}
	if ( !isNdarrayLike( mask ) ) {
		throw new TypeError( format( 'invalid argument. Second argument must be an ndarray-like object. Value: `%s`.', mask ) );
	}
	arrs = maybeBroadcastArrays( [ x, mask ] );
	if ( arguments.length > 2 ) {
		return base( arrs[ 0 ], arrs[ 1 ], arguments[ 2 ] );
	}
	return base( arrs[ 0 ], arrs[ 1 ] );
}
 
/**
* Computes the maximum value along one or more ndarray dimensions according to a mask and assigns the results to a provided output ndarray.
*
* @name assign
* @memberof mskmax
* @type {Function}
* @param {ndarray} x - input ndarray
* @param {ndarray} mask - mask ndarray
* @param {ndarray} out - output ndarray
* @param {Options} [options] - function options
* @param {IntegerArray} [options.dims] - list of dimensions over which to perform a reduction
* @param {boolean} [options.keepdims=false] - boolean indicating whether the reduced dimensions should be included in the returned ndarray as singleton dimensions
* @throws {TypeError} first argument must be an ndarray-like object
* @throws {TypeError} second argument must be an ndarray-like object
* @throws {TypeError} third argument must be an ndarray-like object
* @throws {TypeError} options argument must be an object
* @throws {RangeError} dimension indices must not exceed input ndarray bounds
* @throws {RangeError} number of dimension indices must not exceed the number of input ndarray dimensions
* @throws {Error} must provide valid options
* @returns {ndarray} output ndarray
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var Uint8Array = require( '@stdlib/array/uint8' );
* var ndarray = require( '@stdlib/ndarray/ctor' );
*
* // Create a data buffer:
* var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
*
* // Create a mask buffer:
* var mbuf = new Uint8Array( [ 0, 0, 0, 1, 0, 1 ] );
*
* // Create an output buffer:
* var obuf = new Float64Array( [ 0.0 ] );
*
* // Define the shape of the input array:
* var sh = [ 3, 2 ];
*
* // Define the array strides:
* var sx = [ 2, 1 ];
* var sm = [ 2, 1 ];
*
* // Define the index offset:
* var ox = 0;
* var om = 0;
*
* // Create the input ndarray:
* var x = new ndarray( 'float64', xbuf, sh, sx, ox, 'row-major' );
*
* // Create the mask ndarray:
* var mask = new ndarray( 'uint8', mbuf, sh, sm, om, 'row-major' ); // cspell:disable-line
*
* // Create the output ndarray:
* var out = new ndarray( 'float64', obuf, [], [ 0 ], 0, 'row-major' );
*
* // Perform reduction:
* var res = mskmax.assign( x, mask, out );
* // returns <ndarray>
*
* var v = res.get();
* // returns 5.0
*/
function assign( x, mask, out ) {
	var arrs;
	if ( !isNdarrayLike( x ) ) {
		throw new TypeError( format( 'invalid argument. First argument must be an ndarray-like object. Value: `%s`.', x ) );
	}
	if ( !isNdarrayLike( mask ) ) {
		throw new TypeError( format( 'invalid argument. Second argument must be an ndarray-like object. Value: `%s`.', mask ) );
	}
	if ( !isNdarrayLike( out ) ) {
		throw new TypeError( format( 'invalid argument. Third argument must be an ndarray-like object. Value: `%s`.', out ) );
	}
	arrs = maybeBroadcastArrays( [ x, mask ] );
	if ( arguments.length > 3 ) {
		return base.assign( arrs[ 0 ], arrs[ 1 ], out, arguments[ 3 ] );
	}
	return base.assign( arrs[ 0 ], arrs[ 1 ], out );
}
 
mskmax.assign = assign;
 
 
// EXPORTS //
 
module.exports = mskmax;