All files euclidean.js

87.09% Statements 54/62
100% Branches 1/1
0% Functions 0/1
87.09% Lines 54/62

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 631x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var dnrm2 = require( '@stdlib/blas/base/dnrm2' );
var dcopy = require( '@stdlib/blas/base/dcopy' );
var daxpy = require( '@stdlib/blas/base/daxpy' );
var Float64Array = require( '@stdlib/array/float64' );
 
 
// VARIABLES //
 
// to compute X + (-1)*Y
var ALPHA = -1;
 
 
// MAIN //
 
/**
* Computes the Euclidean distance between two vectors.
*
* @private
* @param {NonNegativeInteger} N - number of elements
* @param {NumericArray} X - strided array
* @param {PositiveInteger} strideX - stride
* @param {NonNegativeInteger} offsetX - index offset
* @param {NumericArray} Y - strided array
* @param {PositiveInteger} strideY - stride
* @param {NonNegativeInteger} offsetY - index offset
* @returns {number} Euclidean distance
*/
function euclidean( N, X, strideX, offsetX, Y, strideY, offsetY ) {
	var diff;

	diff = new Float64Array( N );
	dcopy.ndarray( N, X, strideX, offsetX, diff, 1, 0 ); // Magic number `0` for offset since `diff` is contiguous
	daxpy.ndarray( N, ALPHA, Y, strideY, offsetY, diff, 1, 0 );
	return dnrm2( N, diff, 1 );
}
 
 
// EXPORTS //
 
module.exports = euclidean;