Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x | /**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var dnrm2 = require( '@stdlib/blas/base/dnrm2' );
var dcopy = require( '@stdlib/blas/base/dcopy' );
var daxpy = require( '@stdlib/blas/base/daxpy' );
var Float64Array = require( '@stdlib/array/float64' );
// VARIABLES //
// to compute X + (-1)*Y
var ALPHA = -1;
// MAIN //
/**
* Computes the Euclidean distance between two vectors.
*
* @private
* @param {NonNegativeInteger} N - number of elements
* @param {NumericArray} X - strided array
* @param {PositiveInteger} strideX - stride
* @param {NonNegativeInteger} offsetX - index offset
* @param {NumericArray} Y - strided array
* @param {PositiveInteger} strideY - stride
* @param {NonNegativeInteger} offsetY - index offset
* @returns {number} Euclidean distance
*/
function euclidean( N, X, strideX, offsetX, Y, strideY, offsetY ) {
var diff;
diff = new Float64Array( N );
dcopy.ndarray( N, X, strideX, offsetX, diff, 1, 0 ); // Magic number `0` for offset since `diff` is contiguous
daxpy.ndarray( N, ALPHA, Y, strideY, offsetY, diff, 1, 0 );
return dnrm2( N, diff, 1 );
}
// EXPORTS //
module.exports = euclidean;
|