All files / random/sample/lib renormalizing.js

100% Statements 73/73
100% Branches 8/8
100% Functions 1/1
100% Lines 73/73

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 742x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 7x 7x 7x 24x 24x 7x 7x 24x 7x 42x 7x 7x 35x 35x 7x 7x 7x 2x 2x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
/**
* Samples without replacement from a discrete set using custom probabilities.
*
* ## Notes
*
* -   After each draw, the probabilities of the remaining observations are renormalized so that they sum to one.
*
* @private
* @param {ArrayLike} x - array-like object from which to sample
* @param {NonNegativeInteger} size - sample size
* @param {Function} rand - PRNG for generating uniformly distributed numbers
* @param {ProbabilityArray} probabilities - element probabilities
* @returns {Array} sample
*/
function renormalizing( x, size, rand, probabilities ) {
	var probs;
	var psum;
	var out;
	var N;
	var i;
	var j;
	var k;
	var u;
 
	N = x.length;
	probs = probabilities.slice();
 
	out = [];
	for ( i = 0; i < size; i++ ) {
		u = rand();
		psum = 0;
		for ( j = 0; j < N; j++ ) {
			psum += probs[ j ];
			if ( u < psum ) {
				break;
			}
		}
		for ( k = 0; k < N; k++ ) {
			if ( k === j ) {
				continue;
			}
			probs[ k ] /= 1.0 - probs[ j ];
		}
		probs[ j ] = 0.0;
		out.push( x[ j ] );
	}
	return out;
}
 
 
// EXPORTS //
 
module.exports = renormalizing;