Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 7x 7x 7x 24x 24x 7x 7x 24x 7x 42x 7x 7x 35x 35x 7x 7x 7x 2x 2x 2x 2x 2x 2x 2x | /** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; /** * Samples without replacement from a discrete set using custom probabilities. * * ## Notes * * - After each draw, the probabilities of the remaining observations are renormalized so that they sum to one. * * @private * @param {ArrayLike} x - array-like object from which to sample * @param {NonNegativeInteger} size - sample size * @param {Function} rand - PRNG for generating uniformly distributed numbers * @param {ProbabilityArray} probabilities - element probabilities * @returns {Array} sample */ function renormalizing( x, size, rand, probabilities ) { var probs; var psum; var out; var N; var i; var j; var k; var u; N = x.length; probs = probabilities.slice(); out = []; for ( i = 0; i < size; i++ ) { u = rand(); psum = 0; for ( j = 0; j < N; j++ ) { psum += probs[ j ]; if ( u < psum ) { break; } } for ( k = 0; k < N; k++ ) { if ( k === j ) { continue; } probs[ k ] /= 1.0 - probs[ j ]; } probs[ j ] = 0.0; out.push( x[ j ] ); } return out; } // EXPORTS // module.exports = renormalizing; |