All files / stats/pcorrtest/lib pcorr.js

100% Statements 74/74
100% Branches 3/3
100% Functions 1/1
100% Lines 74/74

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 751x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 1485x 1485x 18x 18x 18x 18x 18x 18x 18x 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var max = require( '@stdlib/math/base/special/max' );
var min = require( '@stdlib/math/base/special/min' );
var sqrt = require( '@stdlib/math/base/special/sqrt' );
var variance = require( '@stdlib/stats/strided/variance' );
var mean = require( '@stdlib/stats/strided/mean' );
 
 
// MAIN //
 
/**
* Computes the Pearson product-moment correlation coefficient between `x` and `y`.
*
* @private
* @param {NumericArray} x - first data array
* @param {NumericArray} y - second data array
* @returns {number} correlation coefficient
*
* @example
* var x = [ 1.0, 2.0, 2.0, 1.0 ];
* var y = [ 1.8, 2.2, 2.5, 1.4 ];
* var r = pcorr( x, y );
* // returns ~0.905
*/
function pcorr( x, y ) {
	var denom;
	var num;
	var out;
	var xy;
	var xm;
	var ym;
	var i;
	var n;
 
	n = x.length;
	xm = mean( n, x, 1 );
	ym = mean( n, y, 1 );
	xy = 0.0;
	for ( i = 0; i < n; i++ ) {
		xy += x[ i ] * y[ i ];
	}
	num = xy - ( n * xm * ym );
	denom = ( n-1 ) * sqrt(variance(n, 1, x, 1)) * sqrt(variance(n, 1, y, 1) );
	out = num / denom;
 
	// Handle rounding errors:
	return max( min( out, 1.0 ), -1.0 );
}
 
 
// EXPORTS //
 
module.exports = pcorr;