Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 1485x 1485x 18x 18x 18x 18x 18x 18x 18x 1x 1x 1x 1x 1x | /** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var max = require( '@stdlib/math/base/special/max' ); var min = require( '@stdlib/math/base/special/min' ); var sqrt = require( '@stdlib/math/base/special/sqrt' ); var variance = require( '@stdlib/stats/strided/variance' ); var mean = require( '@stdlib/stats/strided/mean' ); // MAIN // /** * Computes the Pearson product-moment correlation coefficient between `x` and `y`. * * @private * @param {NumericArray} x - first data array * @param {NumericArray} y - second data array * @returns {number} correlation coefficient * * @example * var x = [ 1.0, 2.0, 2.0, 1.0 ]; * var y = [ 1.8, 2.2, 2.5, 1.4 ]; * var r = pcorr( x, y ); * // returns ~0.905 */ function pcorr( x, y ) { var denom; var num; var out; var xy; var xm; var ym; var i; var n; n = x.length; xm = mean( n, x, 1 ); ym = mean( n, y, 1 ); xy = 0.0; for ( i = 0; i < n; i++ ) { xy += x[ i ] * y[ i ]; } num = xy - ( n * xm * ym ); denom = ( n-1 ) * sqrt(variance(n, 1, x, 1)) * sqrt(variance(n, 1, y, 1) ); out = num / denom; // Handle rounding errors: return max( min( out, 1.0 ), -1.0 ); } // EXPORTS // module.exports = pcorr; |