All files / stats/base/ndarray/meankbn/lib ndarray.js

100% Statements 61/61
100% Branches 4/4
100% Functions 1/1
100% Lines 61/61

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 622x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 3x 3x 2x 2x 1x 3x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var gsumkbn = require( '@stdlib/blas/ext/base/gsumkbn' ).ndarray;
 
 
// MAIN //
 
/**
* Computes the arithmetic mean of a strided array using the Kahan–Babuška–Neumaier algorithm.
*
* ## Method
*
* -   This implementation uses the "Kahan–Babuška–Neumaier algorithm" for improved numerical stability.
*
* ## References
*
* -   Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106).
*
* @param {PositiveInteger} N - number of indexed elements
* @param {NumericArray} x - input array
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} arithmetic mean
*
* @example
* var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ];
*
* var v = meankbn( 4, x, 2, 1 );
* // returns 1.25
*/
function meankbn( N, x, strideX, offsetX ) {
	if ( N <= 0 ) {
		return NaN;
	}
	return gsumkbn( N, x, strideX, offsetX ) / N;
}
 
 
// EXPORTS //
 
module.exports = meankbn;