Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 10x 10x 28x 3x 3x 28x 15x 15x 28x 13x 13x 13x 13x 13x 28x 12x 4x 4x 8x 8x 8x 8x 8x 8x 9x 9x 28x 4x 1x 1x 4x 9x 28x 8x 4x 4x 4x 4x 4x 9x 9x 9x 9x 9x 9x 9x 28x 4x 4x 4x 4x 28x 8x 8x 25x 25x 8x 8x 17x 17x 8x 4x 28x 2x 2x 2x 2x 2x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var broadcastArrayExceptDimensions = require( '@stdlib/ndarray/base/broadcast-array-except-dimensions' ); var normalizeIndex = require( '@stdlib/ndarray/base/normalize-index' ); var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' ); var indicesComplement = require( '@stdlib/array/base/indices-complement' ); var nditerStacks = require( '@stdlib/ndarray/iter/stacks' ); var isNonNegativeInteger = require( '@stdlib/assert/is-nonnegative-integer' ); var isInteger = require( '@stdlib/assert/is-integer' ); var getShape = require( '@stdlib/ndarray/shape' ); var getStrides = require( '@stdlib/ndarray/strides' ); var shape2strides = require( '@stdlib/ndarray/base/shape2strides' ); var getDtype = require( '@stdlib/ndarray/dtype' ); var getOrder = require( '@stdlib/ndarray/order' ); var getData = require( '@stdlib/ndarray/data-buffer' ); var ndarray = require( '@stdlib/ndarray/ctor' ); var format = require( '@stdlib/string/format' ); var assign = require( '@stdlib/ndarray/base/assign' ); var output = require( './output.js' ); // MAIN // /** * Concatenates a list of ndarrays along a specified ndarray dimension. * * @param {ArrayLikeObject<Object>} arrays - array-like object containing input ndarrays * @param {NegativeInteger} dim - dimension along which the ndarrays are concatenated * @throws {TypeError} first argument must be an array of ndarray-like objects * @throws {RangeError} first argument must have one or more ndarrays * @throws {TypeError} second argument must be a negative integer * @returns {ndarray} output ndarray * * @example * var ndarray2array = require( '@stdlib/ndarray/to-array' ); * var Float64Array = require( '@stdlib/array/float64' ); * var ndarray = require( '@stdlib/ndarray/ctor' ); * * var xbuf = new Float64Array( [ -1.0, 2.0, -3.0, 4.0 ] ); * var x = new ndarray( 'float64', xbuf, [ 2, 2 ], [ 2, 1 ], 0, 'row-major' ); * * var ybuf = new Float64Array( [ -5.0, 6.0, -7.0, 8.0, -9.0, 10.0 ] ); * var y = new ndarray( 'float64', ybuf, [ 2, 3 ], [ 3, 1 ], 0, 'row-major' ); * * var out = concat( [ x, y ], -1 ); * // returns <ndarray> * * var arr = ndarray2array( out ); * // returns [ [ -1.0, 2.0, -5.0, 6.0, -7.0 ], [ -3.0, 4.0, 8.0, -9.0, 10.0 ] ] */ function concat( arrays, dim ) { var istacks; var ostacks; var strides; var shapes; var dtypes; var orders; var odata; var oord; var arrs; var out; var osh; var odt; var mi; var N; var d; var s; var i; var v; if ( arguments.length > 1 ) { if ( !isInteger( dim ) ) { throw new TypeError( format( 'invalid argument. Second argument must be a negative integer. Value: `%s`.', dim ) ); } if ( isNonNegativeInteger( dim ) ) { throw new TypeError( format( 'invalid argument. Second argument must be a negative integer. Value: `%s`.', dim ) ); } } N = arrays.length; arrs = []; if ( N < 1 ) { throw new RangeError( format( 'invalid argument. First argument must have one or more ndarrays. Value: `%s`.', N ) ); } // Unpack the ndarrays and standardize ndarray meta data: shapes = []; strides = []; dtypes = []; orders = []; for ( i = 0; i < N; i++ ) { if ( !isndarrayLike( arrays[ i ] ) ) { throw new TypeError( format( 'invalid argument. First argument must be an array of ndarrays. Value: `%s`.', arrays[ i ] ) ); } arrs[ i ] = arrays[ i ]; shapes.push( getShape( arrs[ i ] ) ); strides.push( getStrides( arrs[ i ] ) ); dtypes.push( getDtype( arrs[ i ] ) ); orders.push( getOrder( arrs[ i ] ) ); } // Determine the ndarray with max-rank: mi = 0; for ( i = 1; i < N; i++ ) { if ( shapes[ i ].length > shapes[ mi ].length ) { mi = i; } } // Broadcast all ndarrays to shape of max-rank ndarray: for ( i = 0; i < N; i++ ) { if ( i === mi ) { continue; } arrs[ i ] = broadcastArrayExceptDimensions( arrs[ i ], shapes[ mi ], [ dim ] ); // eslint-disable-line max-len shapes[ i ] = getShape( arrs[ i ] ); } // Normalize dimension index: d = normalizeIndex( dim, shapes[ mi ].length - 1 ); // Create output ndarray: out = output( shapes, dtypes, orders, d ); osh = getShape( out ); if ( osh.length === 1 ) { odt = getDtype( out ); odata = getData( out ); oord = getOrder( out ); for ( i = 0; i < arrs.length; i++ ) { v = ndarray( odt, odata, arrs[ i ].shape, shape2strides( arrs[ i ].shape, oord ), 0, oord ); // eslint-disable-line max-len assign( [ arrs[ i ], v ] ); } return out; } // Create iterator for output subarrays: ostacks = nditerStacks( out, indicesComplement( osh.length, [ d ] ) ); // Assign each input subarray to relevant output subarray: for ( i = 0; i < arrs.length; i++ ) { istacks = nditerStacks( arrs[ i ], indicesComplement( arrs[ i ].shape.length, [ d ] ) ); // eslint-disable-line max-len while ( true ) { s = istacks.next(); if ( s.done ) { break; } assign( [ s.value, ostacks.next().value ] ); } } return out; } // EXPORTS // module.exports = concat; |