Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 169x 169x 169x 169x 169x 8x 8x 161x 169x 2x 2x 2x 2x 2x | /**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var isOperationSide = require( '@stdlib/blas/base/assert/is-operation-side' );
var isTransposeOperation = require( '@stdlib/blas/base/assert/is-transpose-operation' );
var isMatrixOrientation = require( '@stdlib/blas/base/assert/is-matrix-orientation' );
var format = require( '@stdlib/string/format' );
var base = require( './base.js' );
// MAIN //
/**
* Applies a real block reflector `H` or its transpose `H^T` to a real `M` by `N` matrix `C`, from either the left or the right.
*
* ## Notes
*
* - `V` is a double-precision array with dimension `(LDV,K)` if `storev = 'C'`, `(LDV,M)` if `storev = 'R'` and `side = 'L'`, or `(LDV,N)` if `storev = 'R'` and `side = 'R'`.
* - `T` is a double-precision array with dimension `(LDT,K)`. The triangular `K` by `K` matrix `T` in the representation of the block reflector.
* - `C` is a double-precision array with dimension `(LDC,N)`. On entry, the `M` by `N` matrix `C`. On exit, `C` is overwritten by the desired matrix product.
* - `work` is a double-precision array with dimension `(LDWORK,K)`.
*
* @param {string} side - specifies whether `H` or `H^T` is applied from the left or right
* @param {string} trans - specifies whether to apply `H` or `H^T`
* @param {string} direct - indicates how `H` is formed from a product of elementary reflectors
* @param {string} storev - indicates how the vectors which define the elementary reflectors are stored
* @param {NonNegativeInteger} M - number of rows of the matrix `C`
* @param {NonNegativeInteger} N - number of columns of the matrix `C`
* @param {NonNegativeInteger} K - order of the matrix `T`
* @param {Float64Array} V - input matrix
* @param {integer} strideV1 - stride of the first dimension of `V`
* @param {integer} strideV2 - stride of the second dimension of `V`
* @param {integer} offsetV - index offset for `V`
* @param {Float64Array} T - input matrix
* @param {integer} strideT1 - stride of the first dimension of `T`
* @param {integer} strideT2 - stride of the second dimension of `T`
* @param {integer} offsetT - index offset for `T`
* @param {Float64Array} C - input matrix
* @param {integer} strideC1 - stride of the first dimension of `C`
* @param {integer} strideC2 - stride of the second dimension of `C`
* @param {integer} offsetC - index offset for `C`
* @param {Float64Array} work - work array
* @param {integer} strideWork1 - stride of the first dimension of `work`
* @param {integer} strideWork2 - stride of the second dimension of `work`
* @param {integer} offsetWork - index offset for `work`
* @throws {TypeError} first argument must be a valid BLAS operation side
* @throws {TypeError} second argument must be a valid BLAS transpose operation
* @throws {TypeError} third argument must be either `forward` or `backward`
* @throws {TypeError} fourth argument must be a valid matrix orientation
* @returns {Float64Array} updated matrix `C`
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var V = new Float64Array( [ 10.0, 40.0, 70.0, 20.0, 50.0, 80.0, 30.0, 60.0, 90.0 ] );
* var T = new Float64Array( [ 1.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 3.0 ] );
* var C = new Float64Array( [ 11.0, 12.0, 13.0, 21.0, 22.0, 23.0, 31.0, 32.0, 33.0 ] );
* var work = new Float64Array( 9 );
*
* dlarfb( 'left', 'transpose', 'forward', 'columns', 3, 3, 3, V, 3, 1, 0, T, 3, 1, 0, C, 3, 1, 0, work, 3, 1, 0 );
*
* // C => <Float64Array>[ -1350.0, -1400.0, -1450.0, -30961.0, -32102.0, -33243.0, -266612.0, -275464.0, -284316.0 ]
*/
function dlarfb( side, trans, direct, storev, M, N, K, V, strideV1, strideV2, offsetV, T, strideT1, strideT2, offsetT, C, strideC1, strideC2, offsetC, work, strideWork1, strideWork2, offsetWork ) { // eslint-disable-line max-len, max-params
if ( !isOperationSide( side ) ) {
throw new TypeError( format( 'invalid argument. First argument must be a valid BLAS operation side. Value: `%s`.', side ) );
}
if ( !isTransposeOperation( trans ) ) {
throw new TypeError( format( 'invalid argument. Second argument must be a valid BLAS transpose operation. Value: `%s`.', trans ) );
}
if ( direct !== 'forward' && direct !== 'backward' ) {
throw new TypeError( format( 'invalid argument. Third argument must be either `forward` or `backward`. Value: `%s`.', direct ) );
}
if ( !isMatrixOrientation( storev ) ) {
throw new TypeError( format( 'invalid argument. Fourth argument must be a valid matrix orientation. Value: `%s`.', storev ) );
}
return base( side, trans, direct, storev, M, N, K, V, strideV1, strideV2, offsetV, T, strideT1, strideT2, offsetT, C, strideC1, strideC2, offsetC, work, strideWork1, strideWork2, offsetWork ); // eslint-disable-line max-len
}
// EXPORTS //
module.exports = dlarfb;
|