Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; /* eslint-disable max-len */ // MODULES // var iladlc = require( '@stdlib/lapack/base/iladlc' ).ndarray; var iladlr = require( '@stdlib/lapack/base/iladlr' ).ndarray; var dgemv = require( '@stdlib/blas/base/dgemv' ).ndarray; var dger = require( '@stdlib/blas/base/dger' ).ndarray; var daxpy = require( '@stdlib/blas/base/daxpy' ).ndarray; var dscal = require( '@stdlib/blas/base/dscal' ).ndarray; // MAIN // /** * Applies a real elementary reflector `H = I - tau * v * v ^ T` to a real M by N matrix `C`. * * ## Notes * * - `work` should have `N` indexed elements if side = `left` and `M` indexed elements if side = `right`. * - `V` should have `1 + (M-1) * abs(strideV)` indexed elements if side = `left` and `1 + (N-1) * abs(strideV)` indexed elements if side = `right`. * - `C` is overwritten by `H * C` if side = `left` and `C * H` if side = `right`. * * @private * @param {string} side - specifies the side of multiplication with `C`. Use `left` to form `H * C` and `right` to from `C * H`. * @param {NonNegativeInteger} M - number of rows in `C` * @param {NonNegativeInteger} N - number of columns in `C` * @param {Float64Array} V - the vector `v` in the representation of `H` * @param {integer} strideV - stride length for `V` * @param {NonNegativeInteger} offsetV - starting index for `V` * @param {number} tau - the value of `tau` in representation of `H` * @param {Float64Array} C - input matrix * @param {integer} strideC1 - stride of the first dimension of `C` * @param {integer} strideC2 - stride of the second dimension of `C` * @param {NonNegativeInteger} offsetC - starting index for `C` * @param {Float64Array} work - workspace array * @param {integer} strideWork - stride length for `work` * @param {NonNegativeInteger} offsetWork - starting index for `work` * @returns {Float64Array} `C * H` or `H * C` * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var C = new Float64Array( [ 1.0, 5.0, 9.0, 2.0, 6.0, 10.0, 3.0, 7.0, 11.0, 4.0, 8.0, 12.0 ] ); * var V = new Float64Array( [ 0.5, 0.5, 0.5, 0.5 ] ); * var work = new Float64Array( 3 ); * * var out = dlarf1f( 'left', 4, 3, V, 1, 0, 1.0, C, 3, 1, 0, work, 1, 0 ); * // returns <Float64Array>[ -4.5, -10.5, -16.5, -0.75, -1.75, -2.75, 0.25, -0.75, -1.75, 1.25, 0.25, -0.75 ] */ function dlarf1f( side, M, N, V, strideV, offsetV, tau, C, strideC1, strideC2, offsetC, work, strideWork, offsetWork ) { // eslint-disable-line max-params var lastv; var lastc; var i; lastv = 1; lastc = 0; if ( tau !== 0.0 ) { if ( side === 'left' ) { lastv = M; } else { lastv = N; } // i points to the last element in V i = offsetV + ( ( lastv - 1 ) * strideV ); // Move i to the last non-zero element in V while ( lastv > 0 && V[ i ] === 0.0 ) { lastv -= 1; i -= strideV; } if ( side === 'left' ) { lastc = iladlc( lastv + 1, N, C, strideC1, strideC2, offsetC ) + 1; // to account for the difference between zero-based and one-based indexing } else { lastc = iladlr( M, lastv + 1, C, strideC1, strideC2, offsetC ) + 1; // to account for the difference between zero-based and one-based indexing } // lastc is zero if a matrix is filled with zeros } if ( lastc === 0 ) { // Returns C unchanged if tau is zero or all elements in C are zero return C; } if ( side === 'left' ) { if ( lastv === 0 ) { dscal( lastc, 1.0 - tau, C, strideC2, offsetC ); // scale the first row } else { dgemv( 'transpose', lastv-1, lastc, 1.0, C, strideC1, strideC2, offsetC + strideC1, V, strideV, offsetV + strideV, 0.0, work, strideWork, offsetWork ); // C( 1, 0 ) is accessed here daxpy( lastc, 1.0, C, strideC2, offsetC, work, strideWork, offsetWork ); // operates on the first row of C daxpy( lastc, -tau, work, strideWork, offsetWork, C, strideC2, offsetC ); // operates on the first row of C dger( lastv-1, lastc, -tau, V, strideV, offsetV + strideV, work, strideWork, offsetWork, C, strideC1, strideC2, offsetC + strideC1 ); // C( 1, 0 ) is accessed here } } else if ( lastv === 0 ) { dscal( lastc, 1.0 - tau, C, strideC1, offsetC ); // scale the first column } else { dgemv( 'no-transpose', lastc, lastv-1, 1.0, C, strideC1, strideC2, offsetC + strideC2, V, strideV, offsetV + strideV, 0.0, work, strideWork, offsetWork ); // C( 0, 1 ) is accessed here daxpy( lastc, 1.0, C, strideC1, offsetC, work, strideWork, offsetWork ); // operates on the first column of C daxpy( lastc, -tau, work, strideWork, offsetWork, C, strideC1, offsetC ); // operates on the first column of C dger( lastc, lastv-1, -tau, work, strideWork, offsetWork, V, strideV, offsetV + strideV, C, strideC1, strideC2, offsetC + strideC2 ); // C( 0, 1 ) is accessed here } return C; } // EXPORTS // module.exports = dlarf1f; |