Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 21x 21x 21x 2x 2x 2x 2x 2x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var base = require( './base.js' ); // MAIN // /** * Generates an M-by-N real matrix Q with orthonormal columns. The matrix Q is defined as the first N columns of a product of K elementary reflectors of order M. `Q = H(1) H(2) . . . H(K)` as returned by `dgeqrf`. * * @param {PositiveInteger} M - number of rows in matrix `A` * @param {PositiveInteger} N - number of columns in matrix `A` * @param {NonNegativeInteger} K - number of elementary reflectors whose product defines the matrix Q * @param {Float64Array} A - input matrix * @param {integer} strideA1 - stride of the first dimension of `A` * @param {integer} strideA2 - stride of the second dimension of `A` * @param {NonNegativeInteger} offsetA - index offset for `A` * @param {Float64Array} tau - vector of K scalar factors of the elementary reflectors * @param {integer} strideTau - stride length for `tau` * @param {NonNegativeInteger} offsetTau - index offset for `tau` * @param {Float64Array} work - workspace array * @param {integer} strideWork - stride length for `work` * @param {NonNegativeInteger} offsetWork - index offset for `work` * @returns {Float64Array} matrix `A` overwritten with the orthogonal matrix Q * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); * var tau = new Float64Array( [ 0.0, 0.0 ] ); * var work = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ); * * dorg2r( 3, 2, 2, A, 1, 3, 0, tau, 1, 0, work, 1, 0 ); * // A => <Float64Array>[ 1.0, 0.0, 0.0, 0.0, 1.0, 0.0 ] */ function dorg2r( M, N, K, A, strideA1, strideA2, offsetA, tau, strideTau, offsetTau, work, strideWork, offsetWork ) { // eslint-disable-line max-len, max-params return base( M, N, K, A, strideA1, strideA2, offsetA, tau, strideTau, offsetTau, work, strideWork, offsetWork ); // eslint-disable-line max-len } // EXPORTS // module.exports = dorg2r; |