All files / lapack/base/dorg2r/lib dorg2r.js

100% Statements 80/80
100% Branches 9/9
100% Functions 1/1
100% Lines 80/80

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 812x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 19x 19x 19x 19x 13x 13x 19x 2x 2x 19x 2x 2x 2x 2x 2x 2x 4x 19x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isLayout = require( '@stdlib/blas/base/assert/is-layout' );
var isRowMajor = require( '@stdlib/ndarray/base/assert/is-row-major-string' );
var isColumnMajor = require( '@stdlib/ndarray/base/assert/is-column-major-string' );
var max = require( '@stdlib/math/base/special/max' );
var format = require( '@stdlib/string/format' );
var base = require( './base.js' );
 
 
// MAIN //
 
/**
* Generates an M-by-N real matrix Q with orthonormal columns. The matrix Q is defined as the first N columns of a product of K elementary reflectors of order M. `Q = H(1) H(2) . . . H(K)` as returned by `dgeqrf`.
*
* @param {string} order - storage layout
* @param {PositiveInteger} M - number of rows in matrix `A`
* @param {PositiveInteger} N - number of columns in matrix `A`
* @param {NonNegativeInteger} K - number of elementary reflectors whose product defines the matrix Q
* @param {Float64Array} A - input matrix
* @param {PositiveInteger} LDA - stride of the first dimension of `A` (a.k.a., leading dimension of the matrix `A`)
* @param {Float64Array} tau - vector of K scalar factors of the elementary reflectors
* @param {Float64Array} work - workspace array
* @throws {TypeError} first argument must be a valid order
* @throws {RangeError} sixth argument must be greater than or equal to max(1,M)
* @returns {Float64Array} matrix `A` overwritten with the orthogonal matrix Q
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
* var tau = new Float64Array( [ 0.0, 0.0 ] );
* var work = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
*
* dorg2r( 'column-major', 3, 2, 2, A, 3, tau, work );
* // A => <Float64Array>[ 1.0, 0.0, 0.0, 0.0, 1.0, 0.0 ]
*/
function dorg2r( order, M, N, K, A, LDA, tau, work ) {
	var sa1;
	var sa2;
	if ( !isLayout( order ) ) {
		throw new TypeError( format( 'invalid argument. First argument must be a valid order. Value: `%s`.', order ) );
	}
	if ( isRowMajor( order ) && LDA < max( 1, N ) ) {
		throw new RangeError( format( 'invalid argument. Sixth argument must be greater than or equal to max(1,%d). Value: `%d`.', M, LDA ) );
	}
	if ( isColumnMajor( order ) ) {
		sa1 = 1;
		sa2 = LDA;
	} else { // order === 'row-major'
		sa1 = LDA;
		sa2 = 1;
	}
	return base( M, N, K, A, sa1, sa2, 0, tau, 1, 0, work, 1, 0 );
}
 
 
// EXPORTS //
 
module.exports = dorg2r;