Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 19x 19x 19x 19x 13x 13x 19x 2x 2x 19x 2x 2x 2x 2x 2x 2x 4x 19x 2x 2x 2x 2x 2x | /**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var isLayout = require( '@stdlib/blas/base/assert/is-layout' );
var isRowMajor = require( '@stdlib/ndarray/base/assert/is-row-major-string' );
var isColumnMajor = require( '@stdlib/ndarray/base/assert/is-column-major-string' );
var max = require( '@stdlib/math/base/special/max' );
var format = require( '@stdlib/string/format' );
var base = require( './base.js' );
// MAIN //
/**
* Generates an M-by-N real matrix Q with orthonormal columns. The matrix Q is defined as the first N columns of a product of K elementary reflectors of order M. `Q = H(1) H(2) . . . H(K)` as returned by `dgeqrf`.
*
* @param {string} order - storage layout
* @param {PositiveInteger} M - number of rows in matrix `A`
* @param {PositiveInteger} N - number of columns in matrix `A`
* @param {NonNegativeInteger} K - number of elementary reflectors whose product defines the matrix Q
* @param {Float64Array} A - input matrix
* @param {PositiveInteger} LDA - stride of the first dimension of `A` (a.k.a., leading dimension of the matrix `A`)
* @param {Float64Array} tau - vector of K scalar factors of the elementary reflectors
* @param {Float64Array} work - workspace array
* @throws {TypeError} first argument must be a valid order
* @throws {RangeError} sixth argument must be greater than or equal to max(1,M)
* @returns {Float64Array} matrix `A` overwritten with the orthogonal matrix Q
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
* var tau = new Float64Array( [ 0.0, 0.0 ] );
* var work = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
*
* dorg2r( 'column-major', 3, 2, 2, A, 3, tau, work );
* // A => <Float64Array>[ 1.0, 0.0, 0.0, 0.0, 1.0, 0.0 ]
*/
function dorg2r( order, M, N, K, A, LDA, tau, work ) {
var sa1;
var sa2;
if ( !isLayout( order ) ) {
throw new TypeError( format( 'invalid argument. First argument must be a valid order. Value: `%s`.', order ) );
}
if ( isRowMajor( order ) && LDA < max( 1, N ) ) {
throw new RangeError( format( 'invalid argument. Sixth argument must be greater than or equal to max(1,%d). Value: `%d`.', M, LDA ) );
}
if ( isColumnMajor( order ) ) {
sa1 = 1;
sa2 = LDA;
} else { // order === 'row-major'
sa1 = LDA;
sa2 = 1;
}
return base( M, N, K, A, sa1, sa2, 0, tau, 1, 0, work, 1, 0 );
}
// EXPORTS //
module.exports = dorg2r;
|