All files / lapack/base/dorg2r/lib base.js

100% Statements 113/113
100% Branches 7/7
100% Functions 1/1
100% Lines 113/113

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 1143x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 25x 25x 25x 25x 25x 25x 25x 25x 25x 25x 1x 1x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 25x 60x 60x 60x 60x 60x 60x 60x 60x 60x 60x 60x 60x 60x 60x 60x 60x 48x 48x 48x 60x 60x 60x 60x 60x 24x 24x 25x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var dscal = require( '@stdlib/blas/base/dscal' ).ndarray;
var dlarf1f = require( './dlarf1f.js' );
var initUnitColumns = require( './init_unit_columns.js' );
 
 
// MAIN //
 
/**
* Generates an M-by-N real matrix Q with orthonormal columns. The matrix Q is defined as the first N columns of a product of K elementary reflectors of order M. `Q = H(1) H(2) . . . H(K)` as returned by `dgeqrf`.
*
* @private
* @param {PositiveInteger} M - number of rows in matrix `A`
* @param {PositiveInteger} N - number of columns in matrix `A`
* @param {NonNegativeInteger} K - number of elementary reflectors whose product defines the matrix Q
* @param {Float64Array} A - input matrix
* @param {integer} strideA1 - stride of the first dimension of `A`
* @param {integer} strideA2 - stride of the second dimension of `A`
* @param {NonNegativeInteger} offsetA - index offset for `A`
* @param {Float64Array} tau - vector of K scalar factors of the elementary reflectors
* @param {integer} strideTau - stride length for `tau`
* @param {NonNegativeInteger} offsetTau - index offset for `tau`
* @param {Float64Array} work - workspace array
* @param {integer} strideWork - stride length for `work`
* @param {NonNegativeInteger} offsetWork - index offset for `work`
* @returns {Float64Array} matrix `A` overwritten with the orthogonal matrix Q
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
* var tau = new Float64Array( [ 0.0, 0.0 ] );
* var work = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
*
* dorg2r( 3, 2, 2, A, 1, 3, 0, tau, 1, 0, work, 1, 0 );
* // A => <Float64Array>[ 1.0, 0.0, 0.0, 0.0, 1.0, 0.0 ]
*/
function dorg2r( M, N, K, A, strideA1, strideA2, offsetA, tau, strideTau, offsetTau, work, strideWork, offsetWork ) { // eslint-disable-line max-len, max-params
	var ia1;
	var ia3;
	var del;
	var ia2;
	var it;
	var i;
	var j;
 
	if ( N <= 0 ) {
		return A;
	}
 
	// Initialize columns k+1:n to columns of the unit matrix
	initUnitColumns( M, N, K, A, strideA1, strideA2, offsetA );
 
	del = strideA1 + strideA2;
	it = offsetTau + ((K-1)*strideTau);
	ia1 = offsetA + ((K-1)*(strideA1+strideA2));
	ia2 = offsetA + ((K-1)*strideA2);
 
	// Apply H(i) to A(i:m,i:n) from the left
	for ( i = K-1; i >= 0; i-- ) {
		if ( i < N ) {
			// Apply H(i) to A(i:m,i+1:n) from the left
			dlarf1f( 'left', M-i, N-i-1, A, strideA1, ia1, tau[ it ], A, strideA1, strideA2, ia1 + strideA2, work, strideWork, offsetWork );
		}
		if ( i < M ) {
			// Scale A(i+1:m,i) by -tau(i)
			dscal( M-i-1, -tau[ it ], A, strideA1, ia1 + strideA1 );
		}
 
		// Set A(i,i) = 1 - tau(i)
		A[ ia1 ] = 1.0 - tau[ it ];
 
		ia3 = 0;
 
		// Set A(0:i-1,i) to zero
		for ( j = 0; j < i; j++ ) {
			A[ ia2 + ia3 ] = 0.0;
			ia3 += strideA1;
		}
		it -= strideTau;
 
		ia1 -= del;
		ia2 -= strideA2;
	}
 
	return A;
}
 
 
// EXPORTS //
 
module.exports = dorg2r;